Skip to main content
Log in

Diagram of phase transformations in the austenite of hardened alloy Fe-28% Mn-8.5% Al-1% C-1.25% Si as a result of aging due to isothermal heating

  • Isothermal Transformation Diagrams
  • Published:
Metal Science and Heat Treatment Aims and scope

Abstract

The phase composition and the morphology of structures formed as a result of isothermal holds in the range of aging temperatures of hardened alloy Fe-28% Mn, 8.5% Al-1% C-1.25% S are studied. A diagram of the decomposition of initial austenite is plotted starting with the early stages and ending with the moment when the system attains the equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Schmatz, “Structure and properties of austenitic alloys containing aluminum and silicon,” Trans. ASM, 52, 898–913 (1960).

    CAS  Google Scholar 

  2. R. Wang and F. H. Beck, “New stainless steel without nickel or chromium for marine application,” Metall. Prog., March, 72–76 (1983).

  3. J. C. Garcia, N. Rosas, and R. J. Rioja, “Development of oxidation resistant Fe-Mn-Al Alloys,” Metall. Prog., Aug., 47–50 (1982).

  4. S. K. Banerji, “An austenitic stainless steel without nickel and chromium,” Metall. Prog., Apr., 59–63 (1978).

  5. H. Huang, D. Gan, and P. W. Kao, “Effect of alloying additions on the K-phase precipitation in austenitic Fe-Mn-Al-C alloys,” Scr. Metall. Mater., 30(4), 499–504 (1994).

    Article  CAS  Google Scholar 

  6. Y. C. Chao and T. F. Liu, “Grain boundary precipitation behaviors in an Fe-9.8Al-28.6Mn-0.8Si-1.0C alloy,” Scr. Metall. Mater., 25(7), 1623–1628 (1991).

    Article  CAS  Google Scholar 

  7. C. Y. Chao, C. N. Hwang, and T. F. Liu, “Grain boundary precipitation behaviors in an Fe-9.8Al-28.6Mn-0.8Si-1.0C alloy,” Scr. Metall. Mater., 34(1), 75–81 (1996).

    CAS  Google Scholar 

  8. T. F. Liu, J. S. Chou, and C. C. Wu, “Effect of Si addition on the microstructure of an Fe-8.0Al-29.0Mn-0.90C alloy,” Metall. Trans., 21A, 1891–1899 (1990).

    CAS  Google Scholar 

  9. G. C. Godoy, T. L. Buono, and E. M. P. Silva, “Precipitation in Fe-Mn-Al-Si-C austenitic alloys in the temperature range 500 to 800°C,” in: Preprint UFMG (1988), pp. 235–238.

  10. S. M. Chu, P. W. Kao, and D. Gan, “Growth kinetics of K-carbide particles in Fe-30Mn-10Al-1C-1Si alloy,” Scr. Metall. Mater., 26(7), 1067–1070 (1992).

    Article  CAS  Google Scholar 

  11. J. S. Chou and C. G. Chao, “Tensile properties of a DO3-containing Fe-Mn-Al-Si-C alloy at elevated temperatures,” Scr. Metall. Mater., 26(9), 1417–1421 (1992).

    Article  CAS  Google Scholar 

  12. K. S. Chan, L. H. Chen, and T. S. Lui, “Serrated flow and dynamic precipitation in elevated temperature tensile deformation of Fe-Mn-Al-C alloys,” Mater. Trans. JIM, 38(5), 420–426 (1997).

    CAS  Google Scholar 

  13. T. S. Sudarshan, D. P. Harvey, and T. A. Place, “Mechanistic similarities between hydrogen and temperature effects on the ductile-to-brittle transition of a stainless steel,” Metall. Trans., 19A, 1547–1553 (1988).

    CAS  Google Scholar 

  14. J. Charles, A. Berghezan, A. Lutts, and P. L. Dancoisne, “New cryogenic materials: Fe-Mn-Al alloy,” Metal. Prog., May, 71–75 (1981).

  15. L. D. Chumakova, I. S. Kalashnikov, and V. S. Litvinov, “Special features of crystal structure of carbon Fe-Mn-Al austenite after aging,” Fiz. Met. Metalloved., 67(2), 323–327 (1989).

    CAS  Google Scholar 

  16. E. I. Malienko and Yu. D. Tyapkin, “Fragmentary distribution in modulated (quasiperiodic) structures with isomorphic decomposition,” Fiz. Met. Metalloved., 57(3), 942–952 (1984).

    CAS  Google Scholar 

  17. Yu. D. Tyapkin, E. I. Malienko, I. V. Gongadze, et al., “Coalescence in the stage of fragmentary regular structure in Fe-Mn-Al-C alloy,” Fiz. Met. Metalloved., 68(3), 540–547 (1989).

    CAS  Google Scholar 

  18. S. M. Allen and J. W. Cahn, “Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys,” Acta Metall., 10, 425–437 (1976).

    Google Scholar 

  19. S. D. Karakishev and I. S. Kalashnikov, “Short-range ordering of aluminum atoms in the austenite lattice of steel 90G2YU9MVB,” Fiz. Met. Metalloved., 62(3), 616–619 (1986).

    CAS  Google Scholar 

  20. V. S. Litvinov, S. D. Karakishev, and V. V. Ovchinnikov, Nuclear Gamma-Resonance Spectroscopy of Alloys [in Russian], Metallurgiya, Moscow (1982).

    Google Scholar 

  21. I. S. Kalashnikov, S. D. Karakishev, and V. D. Kibal’nik, “Short range ordering of interstitial atoms in the austenite of carbon steel,” in: Ordering of Atoms and Its Effect on the Properties of Alloys, Symposium [in Russian], Part II, UNTs Akad. Nauk SSSR, Sverdlovsk (1983), p. 151.

    Google Scholar 

  22. V. K. Bugaev and V. A. Tatarenko, Interaction and Distribution of Atoms in Interstitial Alloys Based on Close-Packed Metals [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  23. Y. I. Ustinovshikov, “Precipitation in solids,” J. Mater. Sci., 27, 3993–4002 (1992).

    Article  Google Scholar 

  24. N. A. Storchak and F. G. Drachinskaya, “Hardening of Fe-Mn-Al-C steels in the process of aging,” Fiz. Met Metalloved., 44(2), 373–380 (1977).

    CAS  Google Scholar 

  25. K. Sato, K. Tagawa, and Y. Inoue, “Spinodal decomposition and mechanical properties of an austenitic Fe-30Mn-9Al-0.9C alloy,” Mater. Sci. Eng., No. A111, 45–50 (1989).

  26. W. K. Choo, J. H. Kim, and J. C. Yoon, “Microstructural change in austenitic Fe-30Mn-7.8Al-1.3C initiated by spinodal decomposition and its influence on mechanical properties,” Acta Mater., 45(12), 4877–4885 (1977).

    Article  Google Scholar 

  27. K. V. Chuistov, Modulated Structures in Aging Alloys [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  28. M. I. Gol’dshtein and V. M. Farber, Precipitation Hardening of Steel [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  29. K. S. Kalashnikov, V. D. Kibal’nik, V. S. Litvinov, and E. I. Malienko, “Structural changes in high-strength steel 90G28Yu9MVB in early aging stages,” in: Structure and Physicomechanical Properties of Nonmagnetic Steels, Coll. Works [in Russian], Nauka, Moscow (1986), pp. 83–86.

    Google Scholar 

  30. M. S. Khadyev, V. S. Litvinov, V. D. Kibal’nik, and I. S. Kalashnikov, “Structural and phase transformations in austenitic Fe-Mn-Al-C steel,” Fiz. Met. Metalloved., 69(6), 102–106 (1990).

    Google Scholar 

  31. O. A. Bannykh, “Mechanism of silicon influence on the process of carbide segregation from austenite,” Fiz. Met. Metalloved., 27(5), 72–77 (1969).

    Google Scholar 

  32. M. A. Krishtal, Diffusion Processes in Ferrous Alloys [in Russian], Metallurgizdat, Moscow (1963).

    Google Scholar 

  33. O. A. Bannykh and V. M. Blinov, Precipitation Hardening of Nonmagnetic Vanadium-Bearing Steels [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  34. A. G. Khachaturyan, The Theory of Phase Transformations and the Structure of Solid Solutions [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  35. A. G. Khachaturyan, Theory of Structural Transformations in Solids, Wiley, New York (1983).

    Google Scholar 

  36. G. L. Klimchitskaya, O. Acselrad et al, “Investigation of surface magnetic structure in steels of system Fe-Mn-Al-C by atomic force microscopy,” Surf. Rev. Lett., 6(1), 115–125 (1999).

    Article  CAS  Google Scholar 

  37. E. M. Silva, O. Acselrad, I. S. Kalashnikov, et al., Acta Microsc., No. 12 (2002).

  38. G. Ya. Kayak, “Iron-manganese-aluminum precipitation-hardening austenitic alloys,” Metalloved. Term. Obrab. Met., No. 2, 13–16 (1969).

  39. I. S. Kalashnikov, G. V. Chudakova, M. F. Alekseenko, et al., “Phase transformations, fracture toughness, and fatigue resistance of nickel-free nonmagnetic steel 90G29Yu9VBMSh (DI38Sh),” in: Structure and Properties of Nonmagnetic Steels, Coll. Works [in Russian], Nauka, Moscow (1982), pp. 155–158.

    Google Scholar 

  40. O. Acselrad, I. S. Kalashnikov, E. M. Silva, et al., “Phase transformations in Fe-Mn-Al-C austenitic steels with Si addition,” Metall. Mater. Trans. A, 33A, 3569–3573 (2002).

    Article  CAS  Google Scholar 

  41. M. J. Marcinkowski and N. Brown, “Direct observation of anti-phase boundaries in the Fe3Al superlattices,” J. Appl. Phys., 33(2) (1962).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 12, pp. 16–23, December, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acselrad, O., Kalashnikov, I.S., Silva, E.M. et al. Diagram of phase transformations in the austenite of hardened alloy Fe-28% Mn-8.5% Al-1% C-1.25% Si as a result of aging due to isothermal heating. Met Sci Heat Treat 48, 543–553 (2006). https://doi.org/10.1007/s11041-006-0133-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-006-0133-8

Keywords

Navigation