Skip to main content
Log in

On a Shallow Water Equation Perturbed in Schwartz Class

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We discuss the Camassa-Holm equation perturbed in Schwartz class around a suitable constant. This paper is concerned with the wave breaking mechanism for periodic case where two special classes of initial data were involved. The asymptotic behavior of solutions is also analyzed in the following sense: the corresponding solution to initial data with algebraic decay at infinity will retain this property at infinity in its lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boutet de Monvel, A., Kostenko, A., Shepelsky, D., Teschl, G.: Long-time asymptotics for the Camassa-Holm equation. SIAM J. Math. Anal. 41, 1559–1588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa-Holm equation. Anal. Appl. 5, 1–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Constantin, A.: On the scattering problem for the Camassa-Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Constantin, A.: Finite propagation speed for the Camassa-Holm equation. J. Math. Phys. 46, 023506 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math 166, 523–535 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, A., Escher, J.: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51, 475–504 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Mckean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  13. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, A., Gerdjikov, V.S., Ivanov, R.I.: Inverse scattering transform for the Camassa-Holm equation. Inverse Probl. 22, 2197–2207 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Fuchssteiner, B., Fokas, A.: Symplectic structures, their Backlund transformations and hereditary symmetries. Phys. D 4, 47–66 (1981/1982)

    Article  MathSciNet  Google Scholar 

  16. Guo, Z.: Blow up, global existence and infinite propagation speed for the weakly dissipative Camassa-Holm equation. J. Math. Phys. 49, 033516 (2008)

    Article  MathSciNet  Google Scholar 

  17. Guo, Z.: Some properties of solutions to the weakly dissipative Degasperis-Procesi equation. J. Differ. Equ. 246, 4332–4344 (2009)

    Article  MATH  Google Scholar 

  18. Guo, Z.: Asymptotic profiles of solutions to the two-component Camassa-Holm system. Nonlinear Anal. 75, 1–6 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, Z., Ni, L.: Wave breaking for the periodic weakly dissipative DGH equation. Nonlinear Anal. 74, 965–973 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, Z., Zhou, Y.: Wave breaking and persistence properties for the dispersive Rod equation. SIAM J. Math. Anal. 40, 2567–2580 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Henry, D.: Compactly supported solutions of the Camassa-Holm equation. J. Nonlin. Math. Phys. 12, 342–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Henry, D.: Persistence properties for a family of nonlinear partial differential equations. Nonlinear Anal. 70, 1565–1573 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Himonas, A., Misiołek, G., Ponce, G., Zhou, Y.: Persistence properties and unique continuation of solutions of the Camassa-Holm equation. Commun. Math. Phys. 271, 511–522 (2007)

    Article  ADS  MATH  Google Scholar 

  24. Ivanov, R.I.: Water waves and integrability. Philos. Trans. R. Soc. Lond. A 365, 2267–2280 (2007)

    Article  ADS  MATH  Google Scholar 

  25. Jiang, Z., Ni, L., Zhou, Y.: Wave breaking for the Camassa-Holm equation. J. Nonlinear Sci. 22, 235–245 (2012). doi:10.1007/s00332-011-9115-0

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Johnson, R.S.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Kato, T.: Quasi-linear equations of evolution with application to partial differential equations. In: Spectral Theory and Differential Equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jörgens). Lecture Notes in Math., vol. 448, pp. 25–70. Springer, Berlin (1975)

  28. Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. McKean, H.P.: Breakdown of a shallow water equation. Asian J. Math. 2, 767–774 (1998)

    MathSciNet  Google Scholar 

  30. Misiolek, G.: Classical solutions of the periodic Camassa-Holm equation. Geom. Funct. Anal. 12, 1080–1104 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Molinet, L.: On well-posedness results for Camassa-Holm equation on the line: a survey. J. Nonlin. Math. Phys. 11, 521–533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ni, L., Zhou, Y.: Wave breaking and propagation speed for a class of nonlocal dispersive θ-equations. Nonlinear Anal.: Real World Appl. 12, 592–600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tian, L., Gui, G., Liu, Y.: On the Cauchy problem and the scattering problem for the Dullin-Gottwald-Holm equation. Commun. Math. Phys. 257, 667–701 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Toland, J.F.: Stokes waves. Topol. Methods Nonlinear Anal. 7, 1–48 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Whitham, G.B.: Linear and Nonlinear Waves. Wiley-Interscience, New York-London-Sydney (1974)

    MATH  Google Scholar 

  36. Xin, Z., Zhang, P.: On the weak solutions to a shallow water equation. Commun. Pure Appl. Math. 53, 1411–1433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhou, Y.: Wave breaking for a shallow water equation. Nonlinear Anal. 57, 137–152 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhou, Y.: Wave breaking for a periodic shallow water equation. J. Math. Anal. Appl. 290, 591–604 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, Y.: Blow-up of solutions to a nonlinear dispersive rod equation. Calc. Var. Partial Differ. Equ. 25, 63–77 (2006)

    Article  MATH  Google Scholar 

  40. Zhou, Y.: On solutions to the Holm-Staley b-family of equations. Nonlinearity 23, 369–381 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Zhou, Y., Chen, H.: Wave breaking and propagation speed for the Camassa–Holm equation with k ≠ 0. Nonlinear Anal.: Real World Appl. 12, 1875–1882 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhou, Y., Guo, Z.: Blow up and propagation speed of solutions to the DGH equation. Discrete Contin. Dyn. Syst. Ser. B 12, 657–670 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang’ou Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X. On a Shallow Water Equation Perturbed in Schwartz Class. Math Phys Anal Geom 15, 317–329 (2012). https://doi.org/10.1007/s11040-012-9112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-012-9112-z

Keywords

Mathematics Subject Classifications (2010)

Navigation