Skip to main content
Log in

R-T-S Assisted Kalman Filtering for Robot Localization Using UWB Measurement

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

The schematic robot locating employing Rauch-Tung-Striebel smoothing (RTSS) assisted extended Kalman filter (EKF) for fusing the ultra wide band (UWB)-based range measurements is proposed to improve the localization accuracy in this paper. The proposed method includes two main steps: the first one is EKF, which is used to estimate the positions of the mobile robot and UWB reference nodes (RNs), and the second one is RTSS, which is used to smoothen EKF output to get better reference nodes positions. The results of the real test indicate that when compared with the EKF filter, the proposed RTSS assisted EKF can improve the positioning accuracy of the mobile robot and UWB RNs respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahmad A, Lawless G, Lima P (2017) An online scalable approach to unified multirobot cooperative localization and object tracking. IEEE Trans Robot 33(5):1184–1199

    Article  Google Scholar 

  2. Chen Z, Han Z, Hao J, Zhu Q, Soh YC (2015) Fusion of WiFi, smartphone sensors and landmarks using the Kalman filter for indoor localization. Sensors 15(1):715–732

    Article  Google Scholar 

  3. Chiang KW, Duong TT, Liao JK, Lai YC, Huang SC (2012) On-line smoothing for an integrated navigation system with low-cost mems inertial sensors. Sensors 12(12):17372–17389

    Article  Google Scholar 

  4. Chung W, Kim G, Kim M (2007) Development of the multi-functional indoor service robot PSR systems. Auton Robot 22(1):1–17

    Article  Google Scholar 

  5. Colle E, Galerne S (2019) A robust set approach for mobile robot localization in ambient environment. Auton Robot 43(3):1–17

    Article  Google Scholar 

  6. Fan Q, Sun B, Sun Y, Wu Y, Zhuang X (2017) Data fusion for indoor mobile robot positioning based on tightly coupled INS/UWB. The Journal of Navigation 70(5):1079–1097

    Article  Google Scholar 

  7. Fu Q, Retscher G (2009) Active RFID trilateration and location fingerprinting based on RSSI for pedestrian navigation. J Navig 62(2):323–340

    Article  Google Scholar 

  8. Li X, Cai X, Hei Y, Yuan R (2017) NLOS Identification and mitigation based on channel state information for indoor WiFi localization. IET Commun 11(4):531–537

    Article  Google Scholar 

  9. Liu S, Wang S, Liu X, Gandomi AH, Albuquerque V (2021) Human memory update strategy: a multi-layer template update mechanism for remote visual monitoring. IEEE Transactions on Multimedia 23:2188–2198

    Article  Google Scholar 

  10. Liu S, Wang S, Liu X, Lin CT, Lv Z (2021) Fuzzy detection aided real-time and robust visual tracking under complex environments. IEEE Transactions on Fuzzy Systems 29(1):90–102

    Article  Google Scholar 

  11. Malleswaran M, Vaidehi V, Irwin S, Robin B (2013) IMM-UKF-TFS Model-based approach for intelligent navigation. J Navig 66(6)

  12. Monica S, Ferrari G (2018) Improving UWB-based localization in IoT scenarios with statistical models of distance error. Sensors 18(5):1592

    Article  Google Scholar 

  13. Nourmohammadi H, Keighobadi J (2017) Decentralized INS/GPS system with MEMS-grade inertial sensors using QR-factorized CKF. IEEE Sensors J 17(11):3278–3287

    Article  Google Scholar 

  14. Patrick R (2012) A novel 3-dimensional movement model for pedestrian navigation. J Navig 65(2)

  15. Paul G, Kyle O (2018) Tightly-coupled GNSS/vision using a sky-pointing camera for vehicle navigation in urban areas. Sensors 18(4):1244

    Article  Google Scholar 

  16. Wang S, Kobayashi Y, Ravankar AA, Ravankar A, Emaru T (2019) A novel approach for lidar-based robot localization in a scale-drifted map constructed using monocular SLAM. Sensors 19(10):2230

    Article  Google Scholar 

  17. Wang S, Liu X, Liu S, Muhammad K, Heidari AA, Ser JD, Albuquerque VHCd (2021) Human short-long term cognitive memory mechanism for visual monitoring in iot-assisted smart cities. IEEE Internet of Things Journal

  18. Wei H, Wang L (2018) Visual navigation using projection of spatial right-angle in indoor environment. IEEE Trans Image Process 27(7):3164–3177

    Article  MathSciNet  Google Scholar 

  19. Xiang S, Li X, Tang W, Zhang W (2015) RFID/ In-vehicle sensors-integrated vehicle positioning strategy utilising LSSVM and federated UKF in a tunnel. Journal of Navigation -1(4):1–24

    Google Scholar 

  20. Xu Y, Shmaliy YS, Ki AC, Tian G, Chen X (2018) Robust and accurate UWB-based indoor robot localisation using integrated EKF/EFIR filtering. IET Radar, Sonar and Navigation 12(7):750–756

    Article  Google Scholar 

  21. Yang C, Shi W, Chen W (2016) Comparison of unscented and extended Kalman filters with application in vehicle navigation. J Navig 70(2):1–21

    Google Scholar 

  22. Yang Y, Xu T (2003) An adaptive Kalman filter based on sage windowing weights and variance components. J Navig 56(2):231–240

    Article  Google Scholar 

  23. Yu K, Wen K, Li Y, Zhang S, Zhang K (2019) A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments. IEEE Trans Veh Technol 68(1):750–756

    Article  Google Scholar 

  24. Zhao S, Huang B, Liu F (2018) Localization of indoor mobile robot using minimum variance unbiased FIR filter. IEEE Trans Autom Sci Eng 15(2):410–419

    Article  Google Scholar 

  25. Zhuang Y, Hua L, Wang Q, Cao Y, Thompson JS (2019) Visible light positioning and navigation using noise measurement and mitigation. IEEE Trans Veh Technol 68(11):11094–11106

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by 1) the National Key R&D Program of China 2018AAA0101703, 2)the Shandong Key Research and Development Program under Grant 2019GGX104026, 3)the National Natural Science Foundation of China under Grants 61803175.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Zhuang or Pengjiang Qian.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

M. Sun and Y. Xu contribute equally to the article

This work was supported in part by 1) the National Key R&D Program of China 2018AAA0101703, 2)the Shandong Key Research and Development Program under Grant 2019GGX104026, 3)the National Natural Science Foundation of China under Grants 61803175.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Gao, Y., Jiao, Z. et al. R-T-S Assisted Kalman Filtering for Robot Localization Using UWB Measurement. Mobile Netw Appl (2022). https://doi.org/10.1007/s11036-021-01902-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11036-021-01902-6

Keywords

Navigation