Skip to main content
Log in

Characterization and comparison of insulinoma tumor model and pancreatic damage caused by the tumor, and identification of possible markers

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Insulinoma is a neuroendocrine tumor. It arises from the uncontrolled proliferation of pancreatic β cells. In this study, we created an insulinoma tumor model in nude mice. INS-1 cells were injected in two different ways, subcutaneously (S.C.) or intraperitoneally (I.P.). Body weight, tumor weight, and size were measured. ELISA kits were used analyze to Glucose, insulin, and CA19-9 levels in serum, pancreas, and tumor tissues. KCNN4, KCNK1, GLUT2, IR, HSP70, HSF1, and HSP90 levels were analyzed by western blotting of membrane and/or cytosolic fractions of tumor and pancreas tissue. Tumor formation occurred in nude mice, but it did not occur in Wistar albino rats. The tumor has neuroendocrine cell morphology. Insulin and CA19-9 levels increased in pancreas tissue. In tumor tissue, KCNN4 levels were higher in both membrane and cytosolic fractions, while KCNK1 levels were lower in the membrane fraction of the S.C. group. HSP70 levels were also lower in the S.C. group. In pancreas tissue, KCNK1 levels were lower in the membrane fraction of the S.C. and I.P. groups. GLUT2 levels increased in both groups according to the control group, while IR levels decreased in the S.C. group compared to the control group. However, HSF1 levels increased in the I.P. group, while HSP90 decreased in the S.C. group in pancreatic tissues. The S.C. group is a more suitable insulinoma tumor model. KCNN4, KCNK1, and HSP70 proteins may be important biomarkers in the diagnosis and treatment of insulinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Yang KC, Wu CC, Cheng YH, Kuo TF, Lin FH (2008) Chitosan/gelatin hydrogel prolonged the function of insulinoma/agarose microspheres in vivo during xenogenic transplantation. Transplant Proc 40:3623–3626. https://doi.org/10.1016/j.transproceed.2008.06.092

    Article  CAS  PubMed  Google Scholar 

  2. Brom M, Oyen WJG, Joosten L, Gotthardt M, Boerman OC (2010) 68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET. Eur J Nucl Med Mol Imaging 37:1345–1355. https://doi.org/10.1007/s00259-009-1363-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kiesewetter DO, Gao H, Ma Y, Niu G, Quan Q, Guo N, Chen X (2012) 18F-radiolabeled analogs of exendin-4 for PET imaging of GLP-1 in insulinoma. Eur J Nucl Med Mol Imaging 39:463–473. https://doi.org/10.1007/s00259-011-1980-0

    Article  CAS  PubMed  Google Scholar 

  4. Jiang YJ, Lee CL, Wang Q, Zhou ZW, Yang F, Jin C, Fu DL (2014) Establishment of an orthotopic Pancreatic cancer mouse model: cells suspended and injected in Matrigel. World J Gastroenterol 20:9476–9485. https://doi.org/10.3748/wjg.v20.i28.9476

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zeng L, Li J, Li J, Zhang Q, Qian C, Wu W, Lin Z, Liang J, Chen Y, Huang K (2015) Effective suppression of the Kirsten rat sarcoma viral oncogene in pancreatic tumor cells via targeted small interfering RNA delivery using nanoparticles. Pancreas 44:250–259. https://doi.org/10.1097/MPA.0000000000000241

    Article  CAS  PubMed  Google Scholar 

  6. Michaelis KA, Zhu X, Burfeind KG, Krasnow SM, Levasseur PR, Morgan TK, Marks DL (2017) Establishment and characterization of a novel murine model of pancreatic cancer cachexia. J Cachexia Sarcopenia Muscle 8:824–838. https://doi.org/10.1002/jcsm.12225

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pardo LA, Stühmer W (2014) The roles of K(+) channels in cancer. Nat Rev Cancer 14:39–48. https://doi.org/10.1038/nrc3635

    Article  CAS  PubMed  Google Scholar 

  8. Urrego D, Tomczak AP, Zahed F, Stühmer W, Pardo LA (2014) Potassium channels in cell cycle and cell proliferation. Philos Trans R Soc Lond B Biol Sci 369:20130094. https://doi.org/10.1098/rstb.2013.0094

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang X, Jan LY (2014) Targeting potassium channels in cancer. J Cell Biol 206:151–162. https://doi.org/10.1083/jcb.201404136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang S, Zhu L, Yang J, Hu L, Gu J, Xing X, Sun Y, Zhang Z (2017) Integrated expression profiling of potassium channels identifys KCNN4 as a prognostic biomarker of pancreatic cancer. Biochem Biophys Res Commun 494:113–119. https://doi.org/10.1016/j.bbrc.2017.10.072

    Article  CAS  PubMed  Google Scholar 

  11. Karatug Kacar A (2020) Indomethacin decreases insulin secretion by reducing KCa31 as a biomarker of pancreatic tumor and causes apoptotic cell death. Biochem Mol Toxicol 34:e22488. https://doi.org/10.1002/jbt.22488

    Article  CAS  Google Scholar 

  12. Cheng S, Li C, Xie W, Miao Y, Guo J, Wang J, Zhang Y (2020) Integrated analysis of DNA methylation and mRNA expression profiles to identify key genes involved in the regrowth of clinically non-functioning pituitary adenoma. Aging 12:2408–2427. https://doi.org/10.18632/aging.102751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin X, Wu JF, Wang DM, Zhang J, Zhang WJ, Xue G (2020) The correlation and role analysis of KCNK2/4/5/15 in human papillary thyroid carcinoma microenvironment. J Cancer 11:5162–5176. https://doi.org/10.7150/jca.45604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiong F, Wu GH, Wang B, Chen YJ (2021) Plastin-3 is a diagnostic and prognostic marker for pancreatic adenocarcinoma and distinguishes from diffuse large B-cell lymphoma. Cancer Cell Int 21:411. https://doi.org/10.1186/s12935-021-02117-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (review). Int J Oncol 45:18–30. https://doi.org/10.3892/ijo.2014.2399

    Article  CAS  PubMed  Google Scholar 

  16. Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172. https://doi.org/10.1016/j.tibs.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  17. Xia Y, Liu Y, Rocchi P, Wang M, Fan Y, Qu F, Iovanna JL, Peng L (2012) Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant Pancreatic cancer. Cancer Lett 318:145–153. https://doi.org/10.1016/j.canlet.2011.09.043

    Article  CAS  PubMed  Google Scholar 

  18. Ney A, Canciani G, Hsuan JJ, Pereira SP (2020) Modelling pancreatic neuroendocrine cancer: from bench side to clinic. Cancers. https://doi.org/10.3390/cancers12113170

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li QT, Feng YM, Ke ZH, Qiu MJ, He XX, Wang MM, Li YN, Xu J, Shi LL, Xiong ZF (2020) KCNN4 promotes invasion and Metastasis through the MAPK/ERK pathway in hepatocellular carcinoma. J Investig Med 68:68–74. https://doi.org/10.1136/jim-2019-001073

    Article  PubMed  Google Scholar 

  20. Wen J, Lin B, Lin L, Chen Y, Wang O (2020) KCNN4 is a diagnostic and prognostic biomarker that promotes papillary thyroid cancer progression aging. Aging. https://doi.org/10.18632/aging.103710

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jiang SH, Zhu LL, Zhang M, Li RK, Yang Q, Yan JY, Zhang C, Yang JY, Dong FY, Dai M, Hu LP, Li J, Li Q, Wang YH, Yang XM, Zhang YL, Nie HZ, Zhu L, Zhang XL, Tian GA, Zhang XX, Cao XY, Tao LY, Huang S, Jiang YS, Hua R, Luo KQ, Gu JR, Sun YW, Hou S, Zhang Z (2019) GABRP regulates chemokine signalling, macrophage recruitment and tumour progression in Pancreatic cancer through tuning KCNN4-mediated ca 2 + signalling in a GABA-independent manner. Gut 68:1994–2006. https://doi.org/10.1136/gutjnl-2018-317479

    Article  CAS  PubMed  Google Scholar 

  22. Lai W, Liu L, Zeng Y, Wu H, Xu H, Chen S, Chu Z (2013) KCNN4 channels participate in the EMT induced by PRL-3 in Colorectal cancer. Med Oncol 30:566. https://doi.org/10.1007/s12032-013-0566-z

    Article  CAS  PubMed  Google Scholar 

  23. Song Y, Deng Z, Sun H, Zhao Y, Zhao R, Cheng J, Huang Q (2023) Predicting Tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells. J Transl Med 21(1):390. https://doi.org/10.1186/s12967-023-04260-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun X, Li Y, Lan H, Jiang T, Wan X, Cheng Y (2023) Identification of KCNK1 as a potential prognostic biomarker and therapeutic target of breast cancer. Pathol Res Pract 241:154286. https://doi.org/10.1016/j.prp.2022.154286

    Article  CAS  PubMed  Google Scholar 

  25. Karatug Kacar A (2023) Exploring dual effects of dinutuximab beta on cell death and proliferation of insulinoma. Chem Biol Drug Des. https://doi.org/10.1111/cbdd.14368

    Article  PubMed  Google Scholar 

  26. Sho H, Fukui K, Yoneda S, Toyoda S, Ozawa H, Ishibashi C, Fujita Y, Eguchi H, Kozawa J, Shimomura I (2021) Insulinoma induces a hyperinsulinemia-mediated decrease of GLUT2 and GLP1 receptor in normal pancreatic β-cells. Biochem Biophys Res Commun 534:702–706. https://doi.org/10.1016/j.bbrc.2020.11.014

    Article  CAS  PubMed  Google Scholar 

  27. Heckl SM, Kercher L, Abdullazade S, Schneider C, Krüger S, Behrens HM, Sebens S, Schäfer H, Schreiber S, Röcken C (2021) Insulin receptor in pancreatic cancer—crown witness in cross examination. Cancers. https://doi.org/10.3390/cancers13194988

    Article  PubMed  PubMed Central  Google Scholar 

  28. Karatug Kacar A, Aylar D, Kazdal F, Bahadori F (2023) BuOH fraction of Salix Babylonica L. extract increases pancreatic beta-cell tumor death at lower doses without harming their function. Toxicol in Vitro 90:105609. https://doi.org/10.1016/j.tiv.2023.105609

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Ware MB, Zaidi MY, Ruggieri AN, Olson BM, Komar H, Farren MR, Nagaraju GP, Zhang C, Chen Z, Sarmiento JM, Ahmed R, Maithel SK, El-Rayes BF, Lesinski GB (2021) Heat shock Protein-90 inhibition alters activation of pancreatic stellate cells and enhances the efficacy of PD-1 blockade in pancreatic cancer. Mol Cancer Ther 20:150–160. https://doi.org/10.1158/1535-7163.MCT-19-0911

    Article  CAS  PubMed  Google Scholar 

  30. Gulla A, Kazlauskas E, Liang H, Strupas K, Petrauskas V, Matulis D, Eshleman JR (2021) Heat shock protein 90 inhibitor effects on pancreatic cancer cell cultures. Pancreas 50:625–632. https://doi.org/10.1097/MPA.0000000000001807

    Article  CAS  PubMed  Google Scholar 

  31. McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528. https://doi.org/10.1074/jbc.273.13.7523

    Article  CAS  PubMed  Google Scholar 

  32. Bhagat L, Singh VP, Song AM, Van Acker GJD, Agrawal S, Steer ML, Saluja AK (2002) Thermal stress-induced HSP70 mediates protection against intrapancreatic trypsinogen activation and acute Pancreatitis in rats. Gastroenterology 122:156–165. https://doi.org/10.1053/gast.2002.30314

    Article  CAS  PubMed  Google Scholar 

  33. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103. https://doi.org/10.1379/csc-99r.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Agassi A, Phillips P, Dudeja V, Dhaulakhandi D, Sharif R, Dawra R, Lerch MM, Saluja A (2007) Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res 67:616–625. https://doi.org/10.1158/0008-5472.CAN-06-1567

    Article  Google Scholar 

  35. Youness RA, Gohar A, Kiriacos CJ, El-Shazly M (2023) Heat shock proteins: central players in oncological and immuno-oncological tracks. Adv Exp Med Biol 1409:193–203. https://doi.org/10.1007/5584_2022_736

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Claes B. Wollheim (University Medical Center, Geneva) for providing the kind gift of insulinoma INS-1 cell lines. The authors would like to thank Prof. Dr. Erhan Aysan (Yeditepe University Hospital, Department of General Surgery, Endocrine Surgery Unit, Istanbul, Turkey) for his valuable information on endocrine tumor formation.

Funding

This work was supported by the Scientific Research Project Coordination Unit of Istanbul University. Project No: FBA-29893.

Author information

Authors and Affiliations

Authors

Contributions

A.K.K., created the main idea, experimental design, all cell culture experiments done, control of animals during experimentation, taking of tissue, and tumor samples, determination of insulin and CA-19-9 levels, preparation of tissue and tumor samples, determinate of proteins by western blotting, evaluation of all experimental results, done statistics, written manuscript. P.B., Pathological examination of tissue and tumor samples taken at the end of the experiment and immunohistochemically marking of the samples with insulin. D.A., cell culture experiments, control animals during experimentation and label proteins by western blotting. M. C., INS-1 cell injection to experimental animals (rats and nude mice), control of animals during the experiment and termination of the experiment, taken of blood, tissue, and tumor samples. S.B., contributed to providing the necessary facilities for conducting the experiments and edited the manuscript.

Corresponding author

Correspondence to Ayse Karatug Kacar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to Participate

This article contains studies with animals performed. This experimental study was carried out at the Experimental Animals Laboratory of Bezmialem University, in 2019–2021. The project was approved by the local ethics committee for animal experiments at Bezmialem University (2017/243).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karatug Kacar, A., Bulutay, P., Aylar, D. et al. Characterization and comparison of insulinoma tumor model and pancreatic damage caused by the tumor, and identification of possible markers. Mol Biol Rep 51, 109 (2024). https://doi.org/10.1007/s11033-023-08942-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-08942-z

Keywords

Navigation