Skip to main content
Log in

SSR markers in revealing extent of genetic diversity and phylogenetic relationships among chickpea core collection accessions for Western Himalayas

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The exploration of genetic diversity is the key source of germplasm conservation and potential to broaden its genetic base. The globally growing demand for chickpea suggests superior/climate-resilient varieties, which in turn necessitates the germplasm characterization to unravel underlying genetic variation.

Methodology and results

A chickpea core collection comprising of diverse 192 accessions which include cultivated Cicer arietinum, and wild C. reticulatum, C. echinospermum, and C. microphyllum species were investigated to analyze their genetic diversity and relationship, by assaying 33 unlinked simple sequence repeat (SSR) markers. The results amplified a total of 323 alleles (Na), ranging from 2 to 8 with an average of 4.25 alleles per locus. Expected heterozygosity (He) differed from 0.46 to 0.86 with an average of 0.68. Polymorphic information content (PIC) ranged from 0.73 to 0.98 with an average of 0.89. Analysis of molecular variance (AMOVA) showed that most of the variation was among individuals (87%). Cluster analysis resulted in the formation of four distinct clusters. Cluster I represented all cultivated and clusters II, III, and IV comprised a heterogeneous group of cultivated and wild chickpea accessions.

Conclusion

We report considerable diversity and greater resolving power of SSR markers for assessing variability and interrelationship among the chickpea accessions. The chickpea core is expected to be an efficient resource for breeders for broadening the chickpea genetic base and could be useful for selective breeding of desirable traits and in the identification of target genes for genomics-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data analyzed and generated during the current study are available within the article [and/or] its supplementary materials.

References

  1. Mallikarjuna BP, Samineni S, Thudi M, Sajja SB, Khan AW et al (2017) Molecular mapping of flowering time major genes and QTLs in chickpea (Cicer arietinum L.). Front Plant Sci 8:1140

    Article  PubMed  PubMed Central  Google Scholar 

  2. Archak S, Tyagi RK, Harer PN, Mahase LB, Singh N, Dahiya OP et al (2016) Characterization of chickpea germplasm conserved in the Indian national genebank and development of a core set using qualitative and quantitative trait data. Crop J 4(5):417–424

    Article  Google Scholar 

  3. FAOSTAT, Food and Agriculture Organization of the United Nation Statistics for (2017) Online database at https://www.fao.org/faostat/en/#data

  4. Annual Report DPD. 2017. Directorate of Pulses Development, Ministry of Agriculture and Farmers Welfare, Government of India. DPD/Pub./TR/29/2017–18

  5. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31(3):240

    Article  CAS  PubMed  Google Scholar 

  6. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  7. Upadhyaya HD, Yadav D, Dronavalli N, Gowda CLL, Singh S (2010) Mini core germplasm collections for infusing genetic diversity in plant breeding programs. Electron J Plant Breed 1(4):1294–1309

    Google Scholar 

  8. Nguyen TT, Taylor PWJ, Redden RJ, Ford R (2004) Genetic diversity estimates in Cicer using AFLP analysis. Plant Breed 123(2):173–179

    Article  CAS  Google Scholar 

  9. Sethy NK, Shokeen B, Edwards KJ, Bhatia S (2006) Development of microsatellite markers and analysis of intra specific genetic variability in chickpea (Cicer arietinum L.). Theor Appl Genet 1(12):1416–1428

    Article  Google Scholar 

  10. Fayaz H, Mir AH, Tyagi S, Wani AA, Jan N, Yasin M, Mir JI, Mondal B, Khan MA, Mir RR (2021) Assessment of molecular genetic diversity of 384 chickpea genotypes and development of core set of 192 genotypes for chickpea improvement programs. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-021-01296-0

    Article  Google Scholar 

  11. Talebi REZA, Fayaz F, Mardi M, Pirsyedi SM, Naji AM (2008) Genetic relationships among chickpea (Cicer arietinum) elite lines based on RAPD and agronomic markers. Int J Agric Biol 10(3):301–305

    CAS  Google Scholar 

  12. Jida Z, Alemu A, Mullualem D (2018) Genetic diversity among elite chickpea (Cicer arietinum L.) varieties of ethiopia based on inter simple sequence repeat markers. Afr J Biotechnol 17(34):1067–1075

    Article  CAS  Google Scholar 

  13. Sefera T, Abebie B, Gaur PM, Assefa K, Varshney RK (2011) Characterisation and genetic diversity analysis of selected chickpea cultivars of nine countries using simple sequence repeat (SSR) markers. Crop Pasture Sci 62(2):177–187

    Article  Google Scholar 

  14. Keneni G, Bekele E, Imtiaz M, Dagne K, Getu E, Assefa F (2012) Genetic diversity and population structure of ethiopian chickpea (Cicer arietinum L.) germplasm accessions from different geographical origins as revealed by microsatellite markers. Plant Mol Biol Rep 30(3):654–665

    Article  Google Scholar 

  15. Ghaffari P, Talebi R, Keshavarzi F (2014) Genetic diversity and geographical differentiation of Iranian landrace, cultivars, and exotic chickpea lines as revealed by morphological and microsatellite markers. Physiol Mol Biol Plants 20(2):225–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aggarwal H, Choudhary SP, Rana MK, Choudhary R (2018) Assessment or evaluation of genetic diversity among 66 cultivars of chickpea (Cicer arietinum L.) of Indian origin Using SSR MARKERS. Int J Curr Microbiol Appl Sci 7(2):523–533

    Article  Google Scholar 

  17. Choudhary P, Khanna SM, Jain PK (2012) Genetic structure and diversity analysis of the primary gene pool of chickpea using SSR markers. Genet Mol Res 11(2):891–905

    Article  CAS  PubMed  Google Scholar 

  18. Mir AH, Bhat MA, Dar SA, Sofi PA, Bhat NA, Mir RR (2021) Assessment of cold tolerance in chickpea (Cicer spp.) grown under cold/freezing weather conditions of North Western Himalayas of Jammu and Kashmir, India. Physiol Mol Biol Plants. https://doi.org/10.1007/s12298-021-00997-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fayaz H, Rather IA, Wani AA, Tyagi S, Pandey R, Mir RR (2019) Characterization of chickpea gene pools for nutrient concentrations under agro-climatic conditions of North- Western Himalayas. Plant Genet Resour 17:464–467

    Article  CAS  Google Scholar 

  20. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: mendelian inheritance, chromosomal location and population dynamic. Proc Natl Acad Sci USA 81:8014–8019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  22. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci, USA 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perrier X, Jacquemoud-Collet JP (2006) Darwin software. http://darwin.cirad.fr/darwin.

  24. Singh R, Sharma P, Varshney RK, Sharma SK (2008) Chickpea improvement: role of wild species and genetic markers. Biotechnol Genet Eng 25:267–313

    Article  CAS  Google Scholar 

  25. Maesen LJG (1972) Cicer L, A Monograph of the Genus, with Special Reference to the Chickpea (Cicer arietinum L). Its Ecology and Distribution (Doctoral thesis) Wageningen University

  26. Upadhyaya HD, Oritz R (2001) A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298

    Article  Google Scholar 

  27. Mir RR, Varshney RK (2013) Future prospects of molecular markers in plants. In: Henry RJ (ed) Molecular markers in plants. Blackwell Publishing Ltd, Oxford, pp 170–190

    Google Scholar 

  28. Mir RR, Hiremath PJ, Riera-Lizarazu O, Varshney RK (2013) Evolving molecular marker technologies in plants: From RFLP to GBS. In: Lubberstedt T, Varshney RK (eds) Diagnostics in plant breeding. Springer, Dordrecht, pp 229–250

    Chapter  Google Scholar 

  29. Saxena MS, Bajaj D, Kujur A, Das S, Badoni S, Kumar V et al (2014) Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PLoS ONE 9(9):e107484

    Article  PubMed  PubMed Central  Google Scholar 

  30. Upadhyaya HD, Dwivedi SL, Baum M, Varshney RK, Udupa SM, Gowda CLL (2008) Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106

    Article  PubMed  PubMed Central  Google Scholar 

  31. Imtiaz M, Materne M, Hobson K, Van Ginkel M, Malhotra RS (2008) Molecular genetic diversity and linked resistance to ascochyta blight in Australian chickpea breeding materials and their wild relatives. Aust J Agric Res 59(6):554–560

    Article  CAS  Google Scholar 

  32. Castro P, Millan T, Gil J, Merida J, Garcia ML, Rubio J, Fernadez-Romero MD (2011) Identification of chickpea cultivars by microsatellite markers. J Agric Sci 149(4):451–460

    Article  CAS  Google Scholar 

  33. Khan R, Khan H, Harada F, Harada K (2010) Evaluation of microsatellite markers to discriminate induced mutation lines, hybrid lines and cultigens in chickpea (’Cicer arietinum L.). Aust J Crop Sci 4(5):301

    CAS  Google Scholar 

  34. Shukla N, Babbar A, Prakash V, Tripathi N, Saini N (2011) Molecular diversity analysis in some promising lines of chickpea using SSR markers. J Food Legumes 24(4):320–323

    Google Scholar 

  35. Samyuktha SM, Kannan JR, Geethanjali S (2018) Molecular genetic diversity and population structure analysis in chickpea (Cicer arietinum L.) germplasm using SSR markers. Int J Curr Microbiol Appl Sci 7(2):639–651

    Article  Google Scholar 

  36. Mohan S, Kalaimagal T (2020) Genetic diversity studies in chickpea (Cicer arietinum L.) genotypes using SSR markers. J Food Legumes 33(1):1–5

    Google Scholar 

  37. Udupa SM, Sharma A, Sharma RP, Pai RA (1993) Narrow genetic variability in Cicer arietinum L. as revealed by RFLP analysis. J Plant Biochem Biotechnol 2(2):83–86

    Article  CAS  Google Scholar 

  38. Sonnante G, Marangi A, Venora G, Pignone D (1997) Using RAPD markers to investigate genetic variation in chickpea. J Genet Breed 51:303–307

    CAS  Google Scholar 

  39. Sant VJ, Patankar AG, Sarode ND (1999) Potential of DNA markers in detecting divergence and in analyzing heterosis in Indian elite chickpea cultivars. Theor Appl Genet 98:1217–1225

    Article  CAS  Google Scholar 

  40. Singh R, Prasad CD, Singhal V, Randhawa GJ (2003) Assessment of genetic diversity in chickpea cultivars using RAPD, AFLP, and STMS markers. J Breed Genet 57:165–174

    CAS  Google Scholar 

  41. Hajibarat Z, Saidi A, Hajibarat Z, Talebi R (2014) Genetic diversity and population structure analysis of landrace and improved chickpea (Cicer arietinum) genotypes using morphological and microsatellite markers. Environ Exp Biol 12:161–166

    Google Scholar 

  42. Saeed A, Hovsepyan H, Darvishzadeh R, Imtiaz M, Panguluri SK, Nazaryan R (2011) Genetic diversity of Iranian accessions, improved lines of chickpea (Cicer arietinum L.) and their wild relatives by using simple sequence repeats. Plant Mol Biol Rep 29(4):848–858

    Article  CAS  Google Scholar 

  43. Khamassi K, Bettaiëb Ben Kaab L, Khoufi S, Chaabane R et al (2012) Morphological and molecular diversity of Tunisian chickpea. Eur J Hortic Sci 77(1):31

    CAS  Google Scholar 

  44. Bharadwaj C, Chauhan SK, Yadav S, Tara Satyavathi C, Singh R, Kumar J, Srivastava R, Rajguru G (2011) Molecular marker-based linkage map of chickpea (Cicer arietinum) developed from desi × kabuli cross. Int J Agric Sci 81(2):116–118

    Google Scholar 

  45. Sachdeva S, Bharadwaj C, Sharma V, Patil BS, Soren KR, Roorkiwal M, Varshney RK, Bhat KV (2018) Molecular and phenotypic diversity among chickpea (Cicer arietinum L.) genotypes as a function of drought tolerance. Crop Pasture Sci 69(2):142–153

    Article  CAS  Google Scholar 

  46. Excoffier L, Smouse PE, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roorkiwal M, Von Wettberg EJ, Upadhyaya HD, Warschefsky E, Rathore A, Varshney RK (2014) Exploring germplasm diversity to understand the domestication process in Cicer spp using SNP and DArT markers. PLoS ONE 9(7):e102016

    Article  PubMed  PubMed Central  Google Scholar 

  48. Van Oss R, Abbo S, Eshed R, Sherman A, Coyne CJ et al (2015) Genetic relationship in Cicer sp expose evidence for geneflow between the cultigen and its wild progenitor. PLoS ONE 10(10):e0139789

    Article  PubMed  PubMed Central  Google Scholar 

  49. Parween S, Nawaz K, Roy R, Pole AK, Venkata S, Misra G, Jain M et al (2015) An advanced draft genome assembly of a desi type chickpea (C. arietinum L.). Sci Rep 5:12806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thudi M, Upadhyaya HD, Rathore A, Gaur PM et al (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS ONE 9(5):e96758

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bharadwaj C, Srivastava R, Chauhan SK, Satyavathi CT, Kumar J, Faruqui A et al (2011) Molecular diversity and phylogeny in geographical collection of chickpea (Cicer sp.) accessions. J Genet 1:7

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to ICRISAT (Hyderabad), IIPR (Kanpur), NBPGR (New Delhi) for providing the germplasm for the present study.

Funding

This study was not funded by any external funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyazul Rouf Mir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies/ research with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 207 KB)

Supplementary file2 (PDF 193 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, A.H., Bhat, M.A., Fayaz, H. et al. SSR markers in revealing extent of genetic diversity and phylogenetic relationships among chickpea core collection accessions for Western Himalayas. Mol Biol Rep 49, 11469–11479 (2022). https://doi.org/10.1007/s11033-022-07858-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07858-4

Keywords

Navigation