Skip to main content
Log in

Recovering triploid citrus hybrids from 2x × 2x sexual crosses with the aid of embryo rescue and flow cytometry in Turkey

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Turkey is one of the major exporters of mandarins in the Mediterranean region. Seedlessness in citrus, which is one of the most desired fruit quality traits, especially in fresh mandarin export markets, can be obtained via triploidy as in many fruit species. Triploid plants can be recovered by 2x × 2x hybridizations in citrus, as well as 2x × 4x and 4x × 2x crosses. Hence, we aimed to develop local triploid hybrids by using the embryo rescue technique in five crosses using eight different citrus varieties in the present study.

Methods and results

Embryos isolated from abortive seeds derived by 135 days after pollinations were cultured on modified Murashige and Tucker (MT) medium by adding different levels of GA3 to achieve a high germination rate. A population of 574 plants was developed as a result of embryo rescue. After screening the ploidy levels of this 574-plant population with the aid of flow cytometry, 4 triploids from ‘Encore’ × ‘Murcott’, 8 triploids from ‘Fortune’ × ‘Willow leaf’, 1 triploid from ‘Kiyomi’ × ‘Murcott’, and 1 triploid from ‘Ortanique’ × ‘Murcott’ hybridization were recovered. Triploid hybrid plants and related parents were analyzed with SSR markers heterozygotic for parental mandarin varieties. In addition, we evaluated stomatal characteristics of diploid and triploid hybrids obtained from different crosses. Stomatal traits of diploid and triploid hybrids in all crosses significantly differed except the stomata index.

Conclusions

Genotyping of triploid plants confirmed using Simple Sequence Repeat (SSR) molecular markers and five SSRs were able to identify three alleles of triploid hybrids. Selected triploid mandarin hybrids have been grafted on several rootstocks for field trials and are in the process of yield and quality performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO (2020) FAOSTAT. http://www.fao.org/faostat/en/#data/QC. Accessed 8 Jan 2020

  2. Jain SM, Brar DS, Ahloowalia BS (1998) Somaclonal variation and induced mutations in crop improvement. Springer, Netherlands

    Book  Google Scholar 

  3. Ollitrault P, Dambier D, Luro F, Froelicher Y (2008) Ploidy manipulation for breeding seedless triploid citrus. In: Janick J (ed) Plant breeding reviews. Wiley, Hoboken, pp 323–352

    Chapter  Google Scholar 

  4. Aleza P, Juárez J, Cuenca J et al (2010) Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x × 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep 29:1023–1034. https://doi.org/10.1007/s00299-010-0888-7

    Article  CAS  PubMed  Google Scholar 

  5. Geraci G, Esen A, Soost RK (1975) Triploid progenies of citrus cultivars from 2x × 2x crosses. J Hered 66:177–178. https://doi.org/10.1093/oxfordjournals.jhered.a108607

    Article  Google Scholar 

  6. Aleza P, Juárez J, Ollitrault P, Navarro L (2009) Production of tetraploid plants of non apomictic citrus genotypes. Plant Cell Rep 28:1837–1846. https://doi.org/10.1007/s00299-009-0783-2

    Article  CAS  PubMed  Google Scholar 

  7. Carimi F, de Pasquale F, Puglia AM (1998) In vitro rescue of zygotic embryos of sour orange, Citrus aurantium L., and their detection based on RFLP analysis. Plant Breed 117:261–266. https://doi.org/10.1111/j.1439-0523.1998.tb01936.x

    Article  CAS  Google Scholar 

  8. Yildiz E, Kaplankiran M, Demirkeser TH et al (2013) Identification of zygotic and nucellar ındividuals produced from several citrus crosses using SSRs markers. Not Bot Hort Agrobot Cluj 41:478. https://doi.org/10.15835/nbha4129037

    Article  CAS  Google Scholar 

  9. Ollitrault-Sammarcelli F, Legave JM, Michaux-Ferriere N, Hirsch AM (1994) Use of flow cytometry for rapid determination of ploidy level in the genus Actinidia. Sci Hortic 57:303–313. https://doi.org/10.1016/S0304-4238(94)90113-9

    Article  Google Scholar 

  10. Ollitrault P, Dambier D, Jacquemond C et al (1996) In vitro rescue and selection of spontaneous triploids by flow cytometry for easy peeler citrus breeding

  11. Bohanec B (2003) Ploidy determination using flow cytometry. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Springer, Dordrecht, pp 397–403

    Chapter  Google Scholar 

  12. Ochatt SJ (2008) Flow cytometry in plant breeding. Cytometry A 73A:581–598. https://doi.org/10.1002/cyto.a.20562

    Article  CAS  Google Scholar 

  13. Navarro L, Juárez J, Aleza P, Pina JA (2003) Recovery of triploid seedless mandarin hybrids from 2n × 2n and 2n × 4n crosses by embryo rescue and flow cytometry. In: Vasil IK (ed) Plant Biotechnology 2002 and beyond. Springer, Dordrecht, pp 541–544

    Chapter  Google Scholar 

  14. Froelicher Y, Bouffin J, Dambier D, Ollitrault P (2012) Triploid seedless mandarin breeding in France: S02O02. In: XII International Citrus Congress: Book of abstract. https://agritrop.cirad.fr/567275/. Accessed 18 Feb 2020

  15. García Lidón A (2003) La selección clonal de limonero “fino”: Incidencia del patrón. Aspectos morfológicos, agronómicos y bioquímicos. http://purl.org/dc/dcmitype/Text. Universidad Politécnica de Cartagena

  16. Pérez-Tornero O, Porras I (2008) Assessment of polyembryony in lemon: rescue and in vitro culture of immature embryos. Plant Cell Tissue Organ Cult 93:173–180. https://doi.org/10.1007/s11240-008-9358-0

    Article  Google Scholar 

  17. Murashige T, Tucker DH (1969) Growth factor requirements of Citrus tissue culture. Proc First Int Citrus Sympos 3:1155–1160

    CAS  Google Scholar 

  18. Beaulieu JM, Leitch IJ, Patel SU et al (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986. https://doi.org/10.1111/j.1469-8137.2008.02528.x

    Article  PubMed  Google Scholar 

  19. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349

    Article  CAS  Google Scholar 

  20. Kaçar YA, Simsek O, Solmaz I et al (2012) Genetic diversity among melon accessions (Cucumis melo) from Turkey based on SSR markers. Genet Mol Res 11:4622–4631. https://doi.org/10.4238/2012.November.29.2

    Article  CAS  PubMed  Google Scholar 

  21. Kepiro JL, Roose ML (2007) Nucellar embryony. In: Khan IA (ed) Citrus genetics, breeding and biotechnology. CABI, Wallingford, pp 141–149

    Chapter  Google Scholar 

  22. Soost RK, Roose ML (1996) Citrus. In: Fruit breeding: tree and tropical fruits. Wiley, pp 257–323

  23. Esen A, Soost RK (1971) Unexpected triploids in citrus: their origin, identification, and possible use. J Hered 62:329–333. https://doi.org/10.1093/oxfordjournals.jhered.a108186

    Article  Google Scholar 

  24. Guo WW, Liang WJ, Xie KD et al (2016) Exploitation of polyploids from 39 citrus seedling populations. Acta Hortic 1135:11–16. https://doi.org/10.17660/ActaHortic.2016.1135.2

    Article  Google Scholar 

  25. Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in citrus: from classical techniques to emerging biotechnological approaches. J Am Soc Hortic Sci 133:117–126. https://doi.org/10.21273/JASHS.133.1.117

    Article  Google Scholar 

  26. Carimi F (2005) Somatic embryogenesis protocol: citrus. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Berlin, pp 321–343

    Chapter  Google Scholar 

  27. Das A, Paul AK, Chaudhuri SK (2000) Micropropagation of sweet orange, Citrus sinensis Osbeck. For the development of nucellar seedlings. Indian J Exp Biol

  28. Wakana A, Ngo BX, Iwamasa M (2004) Germinability of embryos during seed development in Citrus (Rutaceae). J Faculty Agric Kyushu Univ 49:49–59

    Article  Google Scholar 

  29. Jaskani MJ, Khan IA, Khan MM (2005) Fruit set, seed development and embryo germination in interploid crosses of citrus. Sci Hortic 107:51–57. https://doi.org/10.1016/j.scienta.2005.06.011

    Article  Google Scholar 

  30. Kurt S, Ulger S (2014) Production of common sour orange × carrizo citrange hybrids using embryo rescue. Int J Fruit Sci 14:42–48. https://doi.org/10.1080/15538362.2013.801729

    Article  Google Scholar 

  31. Chagas EA, Pasqual M, Ramos JD et al (2003) Development of globular embryos from the hybridization between “Pêra Rio” sweet orange and “Poncã” mandarin. Rev Bras Frutic 25:483–488. https://doi.org/10.1590/S0100-29452003000300031

    Article  Google Scholar 

  32. Jumin HB, Nito N (1996) Plant regeneration via somatic embryogenesis from protoplasts of six plant species related to Citrus. Plant Cell Rep 15:332–336. https://doi.org/10.1007/BF00232366

    Article  CAS  PubMed  Google Scholar 

  33. Gmitter FG, Ling XB, Deng XX (1990) Induction of triploid Citrus plants from endosperm calli in vitro. Theoret Appl Genet 80:785–790. https://doi.org/10.1007/BF00224192

    Article  Google Scholar 

  34. Loureiro J, Pinto G, Lopes T et al (2005) Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221:815–822. https://doi.org/10.1007/s00425-005-1492-x

    Article  CAS  PubMed  Google Scholar 

  35. Guerra D, Schifino-Wittmann MT, Schwarz SF et al (2016) Tetraploidization in citrus rootstocks: effect of genetic constitution and environment in chromosome duplication. Crop Breed Appl Biotechnol 16:35–41. https://doi.org/10.1590/1984-70332016v16n1a6

    Article  CAS  Google Scholar 

  36. Navarro L, Aleza P, Cuenca J et al (2015) The mandarın trıploıd breedıng program ın Spaın. Acta Hortic. https://doi.org/10.17660/ActaHortic.2015.1065.48

    Article  Google Scholar 

  37. Aryavand A, Ehdaie B, Tran B, Waines JG (2003) Stomatal frequency and size differentiate ploidy levels in Aegilops neglecta. Genet Resour Crop Evol 50:175–182. https://doi.org/10.1023/A:1022941532372

    Article  CAS  Google Scholar 

  38. Usman M, Fatima B, Gillani KA et al (2008) Exploitation of potential target tissues to develop polyploids in citrus. Pak J Bot 40:1755–1766

    CAS  Google Scholar 

  39. Beck SL, Visser G, Dunlop RW, Hare PD (2005) A comparison of direct (flow cytometry) and indirect (stomatal guard cell lengths and chloroplast numbers) techniques as a measure of ploidy in black wattle, Acacia mearnsii (de Wild). S Afr J Bot 71:354–358. https://doi.org/10.1016/S0254-6299(15)30109-5

    Article  CAS  Google Scholar 

  40. Bastianel M, Schwarz SF, Coleta Filho HD et al (1998) Identification of zygotic and nucellar tangerine seedlings (Citrus spp.) using RAPD. Genet Mol Biol. https://doi.org/10.1590/S1415-47571998000100020

    Article  Google Scholar 

  41. Ruiz C, Paz Breto M, Asíns MJ (2000) A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112:89–94. https://doi.org/10.1023/A:1003992719598

    Article  CAS  Google Scholar 

  42. Carlos de Oliveira A, Novac Garcia A, Cristofani M, Machado MA (2002) Identification of citrus hybrids through the combination of leaf apex morphology and SSR markers. Euphytica 128:397–403. https://doi.org/10.1023/A:1021223309212

    Article  CAS  Google Scholar 

  43. Andrade-Rodríguez M, Villegas-Monter A, Carrillo-Castañeda G, García-Velázquez A (2004) Polyembryony and identification of Volkamerian lemon zygotic and nucellar seedlings using RAPD. Pesq Agropec Bras 39:551–559. https://doi.org/10.1590/S0100-204X2004000600006

    Article  Google Scholar 

  44. Tan M, Song J, Deng X (2007) Production of two mandarin × trifoliate orange hybrid populations via embryo rescue with verification by SSR analysis. Euphytica 157:155–160. https://doi.org/10.1007/s10681-007-9407-5

    Article  CAS  Google Scholar 

  45. Golein B, Fifaei R, Ghasemi M (2011) Identification of zygotic and nucellar seedlings in citrus interspecific crosses by inter simple sequence repeats (ISSR) markers. Afr J Biotechnol 10:18965–18970. https://doi.org/10.5897/AJB11.2332

    Article  CAS  Google Scholar 

  46. Fatima B, Usman M, Khan MS et al (2015) Identification of citrus polyploids using chromoseme counts, morphological and SSR markers. Pak J Agric Sci 52:107–114

    Google Scholar 

  47. Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet 94:701–706. https://doi.org/10.1007/s001220050468

    Article  CAS  Google Scholar 

  48. Ferrante SP, Lucretti S, Reale S et al (2010) Assessment of the origin of new citrus tetraploid hybrids (2n = 4x) by means of SSR markers and PCR based dosage effects. Euphytica 173:223–233. https://doi.org/10.1007/s10681-009-0093-3

    Article  CAS  Google Scholar 

  49. Luro F, Maddy F, Ollitrault P, Rist D (2000) Identification of 2n gametes parental origin and mode of nuclear restitution of spontaneous triploid citrus hybrids. In: 9th ISC congress, 3–7 December 2000, Orlando (Etats-Unis). https://agritrop.cirad.fr/477422/. Accessed 4 Mar 2020

Download references

Acknowledgements

The authors are grateful that the manuscript has been read and critically corrected by Dr. Ben FABER who works at the Division of Agriculture and Natural Resources, University of California Cooperative Extension. The authors also would like to thank the ‘Atlas Tarim’ and ‘Incesulu Tarim’ companies for supplying parental plant materials used in hybridizations.

Funding

This research was funded by the Scientific Research Projects Coordination Unit of Cukurova University (Grant Number FBA-2018-11126).

Author information

Authors and Affiliations

Authors

Contributions

BC and TY performed hybridization studies and in vitro embryo culture, DD and YAK performed in SSR screening and result interpretation. BC and SE helped in data analysis and preparation of this manuscript.

Corresponding author

Correspondence to Berken Cimen.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest or competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cimen, B., Yesiloglu, T., Donmez, D. et al. Recovering triploid citrus hybrids from 2x × 2x sexual crosses with the aid of embryo rescue and flow cytometry in Turkey. Mol Biol Rep 49, 5625–5634 (2022). https://doi.org/10.1007/s11033-022-07555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07555-2

Keywords

Navigation