Skip to main content
Log in

Anti-Microbial Peptides: Strategies of Design and Development and Their Promising Wound-Healing Activities

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Current approaches used to overcome microbial infections are becoming inefficient due to the overuse or misuse of antibiotics. Antimicrobial peptides (AMPs) are one of the most promising substitutional candidates for commercial antibiotics.

Methods and Results

The publications in the field of in silico design of AMPs with focus on the wound-healing AMPs were searched though SCOPUS and PubMed. Through publications, it was reported that a number of AMPs approved for clinical use have also showed efficient wound-healing activity. Todays, the design and production of synthetic types of AMPs have attracted attention in order to expand their applications and to cope with their limitations and adverse effects. In this paper, the currently published researches in the field of AMPs and their wound-healing features were summarized and the strategies used in AMPs design and development have been reviewed. Moreover, different databases and online servers used in this regard were summarized.

Conclusion

Design and development of active AMPs, especially those with wound-healing activity, can be performed using bioinformatics servers and software, regarding AMPs structure-activity relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Magana M et al (2020) The value of antimicrobial peptides in the age of resistance. The Lancet Infectious Diseases

  2. Patrulea V et al (2019) Chitosan-based systems for controlled delivery of antimicrobial peptides for biomedical application. Functional Chitosan. Springer, pp 415–455

  3. Ting DSJ et al (2020) Strategies in translating the therapeutic potentials of host defense peptides. Front Immunol 11:983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oliveira NG et al (2020) Physicochemical-guided design of cathelicidin-derived peptides generates membrane active variants with therapeutic potential. Sci Rep 10(1):1–11

    Article  Google Scholar 

  5. Chen CH, Lu TK (2020) Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 9(1):24

    Article  CAS  PubMed Central  Google Scholar 

  6. Puentes PR et al (2020) Design, Screening, and Testing of Non-Rational Peptide Libraries with Antimicrobial Activity: In Silico and Experimental Approaches. Antibiotics 9(12):854

    Article  CAS  PubMed Central  Google Scholar 

  7. Patrulea V, Borchard G, Jordan O (2020) An update on antimicrobial peptides (AMPs) and their delivery strategies for wound infections. Pharmaceutics 12(9):840

    Article  CAS  PubMed Central  Google Scholar 

  8. Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111(5):e24122

    Article  Google Scholar 

  9. Mahlapuu M et al (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  10. Akhmetova A, Heinz A (2021) Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges. Pharmaceutics 13(1):4

    Article  CAS  Google Scholar 

  11. Malik E et al (2016) pH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals 9(4):67

    Article  PubMed Central  Google Scholar 

  12. Melo MN, Ferre R, Castanho MA (2009) Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7(3):245–250

    Article  CAS  PubMed  Google Scholar 

  13. de Fernández M et al (2020) Antifungal peptides as therapeutic agents. Front Cell Infect Microbiol 10:105

    Article  Google Scholar 

  14. Cardoso MH et al (2020) Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Front Microbiol 10:3097

    Article  PubMed  PubMed Central  Google Scholar 

  15. Neff JA et al (2020) Novel Antimicrobial Peptides Formulated in Chitosan Matrices are Effective Against Biofilms of Multidrug-Resistant Wound Pathogens. Mil Med 185(Supplement1):637–643

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu S et al (2018) Novel 3D structure based model for activity prediction and design of antimicrobial peptides. Sci Rep 8(1):1–12

    Google Scholar 

  17. Lee EY et al (2017) What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface focus 7(6):20160153

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mookherjee N et al (2020) Antimicrobial host defence peptides: Functions and clinical potential. Nat Rev Drug Discovery 19(5):311–332

    Article  CAS  PubMed  Google Scholar 

  19. Boparai JK, Sharma PK (2020) Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept Lett 27(1):4–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie Z et al (2019) The Analogs of Temporin-GHa Exhibit a Broader Spectrum of Antimicrobial Activity and a Stronger Antibiofilm Potential against Staphylococcus aureus. Molecules 24(22):4173

    Article  CAS  PubMed Central  Google Scholar 

  21. Mishra AK et al (2018) Tryptophan-rich and proline-rich antimicrobial peptides. Molecules 23(4):815

    Article  PubMed Central  Google Scholar 

  22. Koehbach J, Craik DJ (2019) The vast structural diversity of antimicrobial peptides. Trends Pharmacol Sci 40(7):517–528

    Article  CAS  PubMed  Google Scholar 

  23. Strieker M, Tanović A, Marahiel MA (2010) Nonribosomal peptide synthetases: structures and dynamics. Curr Opin Struct Biol 20(2):234–240

    Article  CAS  PubMed  Google Scholar 

  24. Hughes P et al (2000) The cytotoxic plant protein, β-purothionin, forms ion channels in lipid membranes. J Biol Chem 275(2):823–827

    Article  CAS  PubMed  Google Scholar 

  25. Li J et al (2021) Plant antimicrobial peptides: structures, functions, and applications. Bot Stud 62(1):1–15

    Article  Google Scholar 

  26. Hultmark D et al (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem 127(1):207–217

    Article  CAS  PubMed  Google Scholar 

  27. Cao J et al (2018) Yeast-based synthetic biology platform for antimicrobial peptide production. ACS Synth Biol 7(3):896–902

    Article  CAS  PubMed  Google Scholar 

  28. Ponnappan N et al (2015) Membrane-active peptides from marine organisms—antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects. Probiotics and antimicrobial proteins 7(1):75–89

    Article  CAS  PubMed  Google Scholar 

  29. Tan J et al (2020) Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 252:120078

    Article  CAS  PubMed  Google Scholar 

  30. Wuersching SN et al (2021) Inhibitory effect of LL-37 and human lactoferricin on growth and biofilm formation of anaerobes associated with oral diseases. Anaerobe 67:102301

    Article  CAS  PubMed  Google Scholar 

  31. Yang B et al (2020) Significance of LL-37 on Immunomodulation and Disease Outcome. BioMed Research International, 2020: p. 8349712

  32. Ikonomova SP et al (2020) Effects of histatin 5 modifications on antifungal activity and kinetics of proteolysis. Protein Sci 29(2):480–493

    Article  CAS  PubMed  Google Scholar 

  33. Reis Zambom C, Henrique da F, Fonseca, Santesso Garrido S (2020) Bio- and Nanotechnology as the Key for Clinical Application of Salivary Peptide Histatin: A Necessary Advance. Microorganisms 8(7):1024

    Article  PubMed Central  Google Scholar 

  34. Brice DC, Diamond G (2020) Antiviral Activities of Human Host Defense Peptides. Curr Med Chem 27(9):1420–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez C et al (2020) Antimicrobial Secretions of Toads (Anura, Bufonidae): Bioactive Extracts and Isolated Compounds against Human Pathogens. Antibiotics 9(12):843

    Article  CAS  PubMed Central  Google Scholar 

  36. McMillan KAM, Coombs MRP (2020) Review: Examining the Natural Role of Amphibian Antimicrobial Peptide Magainin Molecules 25(22):5436

    CAS  Google Scholar 

  37. Yi H-Y et al (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98(13):5807–5822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buonocore F et al (2021) Attacins: A Promising Class of Insect Antimicrobial Peptides. Antibiotics 10(2):212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Slavokhotova AA et al (2017) Hevein-like antimicrobial peptides of plants. Biochem (Moscow) 82(13):1659–1674

    Article  CAS  Google Scholar 

  40. Afroz M et al (2020) Ethnobotany and Antimicrobial Peptides From Plants of the Solanaceae Family: An Update and Future Prospects. Front Pharmacol 11:565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Anderssen EL et al (1998) Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol 64(6):2269–2272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pirtskhalava M et al (2021) DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res 49(D1):D288–D297

    Article  CAS  PubMed  Google Scholar 

  43. Semreen MH et al (2018) Recent updates of marine antimicrobial peptides. Saudi Pharm J 26(3):396–409

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huang H-N et al (2017) Antimicrobial peptide Epinecidin-1 promotes complete skin regeneration of methicillin-resistant Staphylococcus aureus-infected burn wounds in a swine model. Oncotarget 8(13):21067–21080

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chung EMC et al (2017) Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound. npj Biofilms and Microbiomes 3(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  46. Di Somma A et al (2020) Antimicrobial and antibiofilm peptides. Biomolecules 10(4):652

    Article  CAS  PubMed Central  Google Scholar 

  47. Ho Y-H et al (2016) Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline–arginine-rich peptide, and lactoferricin B, by using Escherichia coli proteome microarrays. Mol Cell Proteomics 15(6):1837–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barreto-Santamaría A et al (2016) A new synthetic peptide having two target of antibacterial action in E. coli ML35. Frontiers in microbiology, 7: p. 2006

  49. Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5(10):905–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rowe-Magnus DA et al (2019)Cathelicidin peptides restrict bacterial growth via membrane perturbation and induction of reactive oxygen species. MBio, 10(5)

  51. Graf M, Wilson DN (2019) Intracellular antimicrobial peptides targeting the protein synthesis machinery. Antimicrobial Peptides, Advances in Experimental Medicine and Biology. Springer, Singapore, pp 73–89

    Chapter  Google Scholar 

  52. Rončević T, Puizina J, Tossi A (2019) Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era? Int J Mol Sci 20(22):5713

    Article  PubMed Central  Google Scholar 

  53. Marchand C et al (2006) Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Res 34(18):5157–5165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Falanga A et al (2017) Cyclic peptides as novel therapeutic microbicides: Engineering of human defensin mimetics. Molecules 22(7):1217

    Article  PubMed Central  Google Scholar 

  55. van den Bergen G et al (2020) Curved or linear? Predicting the 3-dimensional structure of α‐helical antimicrobial peptides in an amphipathic environment. FEBS Lett 594(6):1062–1080

    Article  PubMed  Google Scholar 

  56. Bradshow J (2003) Cationic antimicrobial peptides. Issues for potential clinical use. Biodrugs 17:233–240

    Article  Google Scholar 

  57. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1):27–55

    Article  CAS  PubMed  Google Scholar 

  58. Lee T-H, Hall KN, Aguilar M-I (2016) Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Curr Top Med Chem 16(1):25–39

    Article  CAS  PubMed  Google Scholar 

  59. Greco I et al (2020) Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 10(1):13206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yount NY et al (2006) Advances in antimicrobial peptide immunobiology. Pept Science: Original Res Biomolecules 84(5):435–458

    Article  CAS  Google Scholar 

  61. Wang G (2020) Bioinformatic analysis of 1000 amphibian antimicrobial peptides uncovers multiple length-dependent correlations for peptide design and prediction. Antibiotics 9(8):491

    Article  CAS  PubMed Central  Google Scholar 

  62. Uematsu N, Matsuzaki K (2000) Polar Angle as a Determinant of Amphipathic α-Helix-Lipid Interactions: A Model Peptide Study. Biophys J 79(4):2075–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Al Tall Y et al (2019) Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. Infection and drug resistance. 12:1035–1045

  64. Waghu FH et al (2018) Designing antibacterial peptides with enhanced killing kinetics. Front Microbiol 9:325

    Article  PubMed  PubMed Central  Google Scholar 

  65. Torres MD et al (2019) Peptide design principles for antimicrobial applications. J Mol Biol 431(18):3547–3567

    Article  CAS  PubMed  Google Scholar 

  66. Houyvet B et al (2018) Design of antimicrobial peptides from a cuttlefish database. Amino Acids 50(11):1573–1582

    Article  CAS  PubMed  Google Scholar 

  67. Wang G (2015) 18 - Database Resources Dedicated to Antimicrobial Peptides. Antimicrobial Resistance and Food Safety. Academic Press, San Diego, pp 365–384. C.-Y. Chen, X. Yan, and C.R. Jackson, Editors

    Chapter  Google Scholar 

  68. Waghu FH, Idicula-Thomas S (2020) Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Sci 29(1):36–42

    Article  CAS  PubMed  Google Scholar 

  69. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 44(D1): p. D1087-D1093

  70. Kang X et al (2019) DRAMP 2.0, an updated data repository of antimicrobial peptides. Sci Data 6(1):148

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ramos-Martín F et al (2019) ADAPTABLE: a comprehensive web platform of antimicrobial peptides tailored to the user’s research. Life Sci alliance 2(6):e201900512

    Article  PubMed  PubMed Central  Google Scholar 

  72. Piotto SP et al (2012) YADAMP: yet another database of antimicrobial peptides. Int J Antimicrob Agents 39(4):346–351

    Article  CAS  PubMed  Google Scholar 

  73. Usmani SS et al (2018) AntiTbPdb: a knowledgebase of anti-tubercular peptides. Database, 2018

  74. Di Luca M et al (2015) BaAMPs: the database of biofilm-active antimicrobial peptides. Biofouling 31(2):193–199

    Article  PubMed  Google Scholar 

  75. Whitmore L, Wallace BA (2004) The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res 32(Database issue):D593–D594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang J, Roy A, Zhang Y (2013) BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res 41(Database issue):D1096–D1103

    CAS  PubMed  Google Scholar 

  77. Wang CK et al (2008) CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic Acids Res 36(Database issue):D206–D210

    CAS  PubMed  Google Scholar 

  78. Novković M et al (2012) DADP: the database of anuran defense peptides. Bioinformatics 28(10):1406–1407

    Article  PubMed  Google Scholar 

  79. Flissi A et al (2020) Norine: update of the nonribosomal peptide resource. Nucleic Acids Res 48(D1):D465–d469

    CAS  PubMed  Google Scholar 

  80. Tyagi A et al (2015) CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res 43(Database issue):D837–D843

    Article  CAS  PubMed  Google Scholar 

  81. Chen W et al (2016) iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 7(13):16895–16909

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gautam A et al (2014) Hemolytik: a database of experimentally determined hemolytic and non-hemolytic peptides. Nucleic Acids Res 42(Database issue):D444–D449

    Article  CAS  PubMed  Google Scholar 

  83. Agrawal P et al (2016) CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides. Nucleic Acids Res 44(D1):D1098–D1103

    Article  CAS  PubMed  Google Scholar 

  84. Khatun MS, Hasan MM, Kurata H (2019) PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features. Front Genet 10:129–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gasteiger E et al (2005) Protein identification and analysis tools on the ExPASy server. : p. 571–607

  86. Gautam A et al (2015) Computer-Aided Virtual Screening and Designing of Cell-Penetrating Peptides. Methods Mol Biol 1324:59–69

    Article  PubMed  Google Scholar 

  87. Atanaki FF et al (2020) BIPEP: Sequence-based Prediction of Biofilm Inhibitory Peptides Using a Combination of NMR and Physicochemical Descriptors. ACS Omega 5:7290–7297

    Article  Google Scholar 

  88. Chaudhary K et al (2016) A Web Server and Mobile App for Computing Hemolytic Potency of Peptides. Sci Rep 6(1):22843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gupta S et al (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8(9):e73957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sharma A et al (2014) Designing of peptides with desired half-life in intestine-like environment. BMC Bioinformatics 15(1):282

    Article  PubMed  PubMed Central  Google Scholar 

  91. Meher PK et al (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep 7:42362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Molero-Abraham M et al (2015) EPIPOX: Immunoinformatic Characterization of the Shared T-Cell Epitome between Variola Virus and Related Pathogenic Orthopoxviruses. J Immunol Res 2015:738020

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lamiable A et al (2016) PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res 44(W1):W449–W454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gautier R et al (2008) HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics 24(18):2101–2102

    Article  CAS  PubMed  Google Scholar 

  95. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22(1):4–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Azari M, Asad S, Mehrnia MR (2020) Heterologous production of porcine derived antimicrobial peptide PR-39 in Escherichia coli using SUMO and intein fusion systems. Protein expression 169:105568

    Article  CAS  Google Scholar 

  97. Chen Q-c et al (2021) High-level expression and purification of melittin in Escherichia coli using SUMO fusion partner. Int J Pept Res 27(1):9–15

    Article  CAS  Google Scholar 

  98. Wang Y-Q, Cai J-Y (2007) High-level expression of acidic partner-mediated antimicrobial peptide from tandem genes inEscherichia coli. Appl Biochem Biotechnol 141(2):203–213

    Article  CAS  PubMed  Google Scholar 

  99. Roca-Pinilla R et al (2020) A new generation of recombinant polypeptides combines multiple protein domains for effective antimicrobial activity. Microb Cell Fact 19(1):1–7

    Article  Google Scholar 

  100. Veiga A et al (2019) Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC50%, and IC90% of antimicrobial compounds. J Microbiol Methods 162:50–61

    Article  CAS  PubMed  Google Scholar 

  101. O’Toole GA Microtiter dish biofilm formation assay. Journal of visualized experiments: JoVE, 2011(47): p.2437

  102. Song Y et al (2019) A short peptide potentially promotes the healing of skin wound.Bioscience Reports, 39(3)

  103. Souza PF et al (2020) Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms. Biochimie 175:132–145

    Article  CAS  PubMed  Google Scholar 

  104. Gomes A et al (2017) Wound-healing peptides for treatment of chronic diabetic foot ulcers and other infected skin injuries. Molecules 22(10):1743

    Article  PubMed Central  Google Scholar 

  105. Hirsch T et al (2009) Human beta-defensin‐3 promotes wound healing in infected diabetic wounds. J Gene Med 11(3):220–228

    Article  CAS  PubMed  Google Scholar 

  106. Kolar SS, McDermott AM (2011) Role of host-defence peptides in eye diseases. Cell Mol Life Sci 68(13):2201–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Tabarzad.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Compliance with Ethical Standards

This article does not contain any studies with animals performed by any of the authors and also, does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, F., Ghobeh, M. & Tabarzad, M. Anti-Microbial Peptides: Strategies of Design and Development and Their Promising Wound-Healing Activities. Mol Biol Rep 49, 9001–9012 (2022). https://doi.org/10.1007/s11033-022-07405-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07405-1

Keywords

Navigation