Skip to main content

Advertisement

Log in

PIK3CA hotspot mutations p. H1047R and p. H1047L sensitize breast cancer cells to thymoquinone treatment by regulating the PI3K/Akt1 pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Nigella sativa (N. sativa) exhibits anti-inflammatory, antioxidant, antidiabetic, antimetastatic and antinociceptive effects and has been used to treat dozens of diseases. Thymoquinone (TQ) is an important and active component isolated from N. sativa seeds. Inhibition of cancer-associated activating PIK3CA mutations is a new prospective targeted therapy in personalized metastatic breast cancer (MBC). TQ is reported to be an effective inhibitor of the PI3K/Akt1 pathway in MBC. This study aimed to evaluate the in vitro antitumor effect of TQ in the context of two PIK3CA hotspot mutations, p. H1047R and p. H1047L.

Methods and results

Molecular dynamics, free energy landscapes and principal component analyses were also used to survey the mechanistic effects of the p. H1047R and p. H1047L mutations on the PI3K/Akt1 pathway. Our findings clearly confirmed that the p. H1047R and p. H1047L mutants could reduce the inhibitory effect of ΔNp63α on the kinase domain of PIK3CA, resulting in increased activity of PI3K downstream signals. Structurally, the partial disruption of the interaction between the ΔNp63α DNA binding domain and the PIK3CA kinase domain at residues 114–359 and 797–1068 destabilizes the conformation of the activation loop and modifies the PIK3CA/ΔNp63α complex. Alongside these structural changes, we found that TQ treatment resulted in high PI3K/Akt1 pathway inhibition in p. H1047R and p. H1047L-expressing cells versus wild-type cells.

Conclusions

These two PIK3CA hotspot mutations therefore not only contribute to tumor progression in patients with MBC but may also serve as targets for the development of novel small molecule therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Majdalawieh AF, Fayyad MW (2015) Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: a comprehensive review. Int Immunopharmacol 28:295–304

    Article  CAS  PubMed  Google Scholar 

  2. Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, Sisakhtnezhad S (2015) Thymoquinone and its therapeutic potentials. Pharmacol Res 95–96:138–158

    Article  PubMed  Google Scholar 

  3. Khan MA, Tania M, Fu J (2019) Epigenetic role of thymoquinone: impact on cellular mechanism and cancer therapeutics. Drug Discov Today 24:2315–2322

    Article  CAS  PubMed  Google Scholar 

  4. Khan MA, Tania M, Wei C, Mei Z, Fu S, Cheng J, Xu J, Fu J (2015) Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget 6:19580–19591

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mollazadeh H, Afshari AR, Hosseinzadeh H (2017) Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: involvement of apoptosis: black cumin and cancer. J Pharmacopuncture 20:158–172

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  7. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  CAS  PubMed  Google Scholar 

  8. Cheng J, Fu S, Wei C, Tania M, Khan MA, Imani S, Zhou B, Chen H, Xiao X, Wu J, Fu J (2017) Evaluation of PIK3CA mutations as a biomarker in Chinese breast carcinomas from Western China. Cancer Biomark 19:85–92

    Article  CAS  PubMed  Google Scholar 

  9. Yamaguchi H, Yoshida S, Muroi E, Yoshida N, Kawamura M, Kouchi Z, Nakamura Y, Sakai R, Fukami K (2011) Phosphoinositide 3-kinase signaling pathway mediated by p110alpha regulates invadopodia formation. J Cell Biol 193:1275–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ, Tsui DW, Liu B, Dawson SJ, Abraham J, Northen H, Peden JF, Mukherjee A, Turashvili G, Green AR, McKinney S, Oloumi A, Shah S, Rosenfeld N, Murphy L, Bentley DR, Ellis IO, Purushotham A, Pinder SE, Borresen-Dale AL, Earl HM, Pharoah PD, Ross MT, Aparicio S, Caldas C (2016) The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 7:11479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng H, Liu P, Ohlson C, Xu E, Symonds L, Isabella A, Muller WJ, Lin NU, Krop IE, Roberts TM, Winer EP, Arteaga CL, Zhao JJ (2016) PIK3CA(H1047R)- and Her2-initiated mammary tumors escape PI3K dependency by compensatory activation of MEK-ERK signaling. Oncogene 35:2961–2970

    Article  CAS  PubMed  Google Scholar 

  12. Yuan W, Stawiski E, Janakiraman V, Chan E, Durinck S, Edgar KA, Kljavin NM, Rivers CS, Gnad F, Roose-Girma M, Haverty PM, Fedorowicz G, Heldens S, Soriano RH, Zhang Z, Wallin JJ, Johnson L, Merchant M, Modrusan Z, Stern HM, Seshagiri S (2013) Conditional activation of Pik3ca(H1047R) in a knock-in mouse model promotes mammary tumorigenesis and emergence of mutations. Oncogene 32:318–326

    Article  CAS  PubMed  Google Scholar 

  13. Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, Wu M, Sun S, Zhang H, You H, Ji H, Zhang Y, Bergholz J, Xiao ZJ (2017) DeltaNp63alpha is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci USA 114:E3964–E3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Buttitta F, Felicioni L, Barassi F, Martella C, Paolizzi D, Fresu G, Salvatore S, Cuccurullo F, Mezzetti A, Campani D, Marchetti A (2006) PIK3CA mutation and histological type in breast carcinoma: high frequency of mutations in lobular carcinoma. J Pathol 208:350–355

    Article  CAS  PubMed  Google Scholar 

  15. Huang CH, Mandelker D, Gabelli SB, Amzel LM (2008) Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Cell Cycle 7:1151–1156

    Article  CAS  PubMed  Google Scholar 

  16. Broderick DK, Di C, Parrett TJ, Samuels YR, Cummins JM, McLendon RE, Fults DW, Velculescu VE, Bigner DD, Yan H (2004) Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Can Res 64:5048–5050

    Article  CAS  Google Scholar 

  17. Bergholz J, Zhang Y, Wu J, Meng L, Walsh EM, Rai A, Sherman MY, Xiao ZX (2014) DeltaNp63alpha regulates Erk signaling via MKP3 to inhibit cancer metastasis. Oncogene 33:212–224

    Article  CAS  PubMed  Google Scholar 

  18. Yu J, Wjasow C, Backer JM (1998) Regulation of the p85/p110alpha phosphatidylinositol 3’-kinase. Distinct roles for the n-terminal and c-terminal SH2 domains. J Biol Chem 273:30199–30203

    Article  CAS  PubMed  Google Scholar 

  19. Shen S, Wei C, Fu J (2021) RNA-sequencing reveals heat shock 70-kDa protein 6 (HSPA6) as a novel thymoquinone-upregulated gene that inhibits growth, migration, and invasion of triple-negative breast cancer cells. Front Oncol 11:667995

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ng PK, Li J, Jeong KJ, Shao S, Chen H, Tsang YH, Sengupta S, Wang Z, Bhavana VH, Tran R, Soewito S, Minussi DC, Moreno D, Kong K, Dogruluk T, Lu H, Gao J, Tokheim C, Zhou DC, Johnson AM, Zeng J, Ip CKM, Ju Z, Wester M, Yu S, Li Y, Vellano CP, Schultz N, Karchin R, Ding L, Lu Y, Cheung LWT, Chen K, Shaw KR, Meric-Bernstam F, Scott KL, Yi S, Sahni N, Liang H, Mills GB (2018) Systematic functional annotation of somatic mutations in cancer. Cancer Cell 33:450–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu J, Zhou B, Zhang L, Balaji KS, Wei C, Liu X, Chen H, Peng J, Fu J (2020) Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Mol Biol Rep 47:4383–4392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, Szallasi Z (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1809 patients. Breast Cancer Res Treat 123:725–731

    Article  PubMed  Google Scholar 

  23. Fu J, Liao L, Balaji KS, Wei C, Kim J, Peng J (2021) Epigenetic modification and a role for the E3 ligase RNF40 in cancer development and metastasis. Oncogene 40:465–474

    Article  CAS  PubMed  Google Scholar 

  24. Morris A, MacArthur M, Hutchinson E, Thornton J (1992) Stereochemical quality of protein structure coordinates. Proteins 12:345–364

    Article  CAS  PubMed  Google Scholar 

  25. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:W510–W514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Venselaar H, Te Beek TA, Kuipers RK, Hekkelman ML, Vriend G (2010) Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform 11:548

    Article  Google Scholar 

  27. Kumar P, Henikoff S, Ng P (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  CAS  PubMed  Google Scholar 

  28. Fu J, Cheng J, Zhou Q, Khan MA, Duan C, Peng J, Lv H, Fu J (2020) Novel compound heterozygous nonsense variants, p.L150* and p.Y3565*, of the USH2A gene in a Chinese pedigree are associated with Usher syndrome type IIA. Mol Med Rep 22:3464–3472

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu J, Wei C, He J, Zhang L, Zhou J, Balaji KS, Shen S, Peng J, Sharma A, Fu J (2021) Evaluation and characterization of HSPA5 (GRP78) expression profiles in normal individuals and cancer patients with COVID-19. Int J Biol Sci 17:897–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng J, Zhou J, Fu S, Fu J, Zhou B, Chen H, Fu J, Wei C (2021) Prostate adenocarcinoma and COVID-19: The possible impacts of TMPRSS2 expressions in susceptibility to SARS-CoV-2. J Cell Mol Med 25:4157–4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng J, Zhou Q, Fu J, Wei C, Zhang L, Khan MSS, Lv H, Anuchapreeda S, Fu J (2021) Novel compound heterozygous missense variants (c.G955A and c.A1822C) of CACNA2D4 likely causing autosomal recessive retinitis pigmentosa in a Chinese patient. 3 Biotech. 11:208

    Article  PubMed  Google Scholar 

  32. Imani S, Cheng J, Shasaltaneh M, Wei C, Yang L, Fu S, Zou H, Khan M, Zhang X, Chen H, Zhang D, Duan C, Lv H, Li Y, Chen R, Fu J (2018) PROM1Genetic identification and molecular modeling characterization reveal a novel mutation in Stargardt4-like macular dystrophy. Oncotarget 9:122–141

    Article  PubMed  Google Scholar 

  33. Imani S, Ijaz I, Shasaltaneh M, Fu S, Cheng J, Fu J (2018) Molecular genetics characterization and homology modeling of the CHM gene mutation: a study on its association with choroideremia. Mutat Res 775:39–50

    Article  CAS  Google Scholar 

  34. Imani S, Ijaz I, Shasaltaneh MD, Fu S, Cheng J, Fu J (2018) In silico data analyses of the hotspot mutations of CHM gene in choroideremia disease. Data Brief 18:1217–1223

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122

    Article  CAS  PubMed  Google Scholar 

  36. Dyer K, Rosenberg H (2006) The RNase a superfamily: generation of diversity and innate host defense. Mol Divers 10:585–597

    Article  CAS  PubMed  Google Scholar 

  37. Roe D, Cheatham T (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095

    Article  CAS  PubMed  Google Scholar 

  38. Zacharias J, Knapp E (2014) Protein secondary structure classification revisited: processing DSSP information with PSSC. J Chem Inf Model 54:2166–2179

    Article  CAS  PubMed  Google Scholar 

  39. Tournier A, Smith J (2003) Principal components of the protein dynamical transition. Phys Rev Lett 91:208106

    Article  PubMed  Google Scholar 

  40. Vogt P, Kang S, Elsliger M, Gymnopoulos M (2007) Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem Sci 32:342–349

    Article  CAS  PubMed  Google Scholar 

  41. Gray J (2006) High-resolution protein-protein docking. Curr Opin Struct Biol 16:183–193

    Article  CAS  PubMed  Google Scholar 

  42. Ritchie D (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9:1–15

    Article  CAS  PubMed  Google Scholar 

  43. Fu J, Qin L, He T, Qin J, Hong J, Wong J, Liao L, Xu J (2011) The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res 21:275–289

    Article  CAS  PubMed  Google Scholar 

  44. Fu J, Zhang L, He T, Xiao X, Liu X, Wang L, Yang L, Yang M, Zhang T, Chen R, Xu J (2012) TWIST represses estrogen receptor-alpha expression by recruiting the NuRD protein complex in breast cancer cells. Int J Biol Sci 8:522–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li D, Liu X, Zhang L, He J, Chen X, Liu S, Fu J, Fu S, Chen H, Fu J, Cheng J (2021) COVID-19 disease and malignant cancers: the impact for the furin gene expression in susceptibility to SARS-CoV-2. Int J Biol Sci 17:3954–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C, Gao J, Socci ND, Solit DB, Olshen AB, Schultz N, Taylor BS (2016) Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol 34:155–163

    Article  CAS  PubMed  Google Scholar 

  47. Dirican E, Akkiprik M, Ozer A (2016) Mutation distributions and clinical correlations of PIK3CA gene mutations in breast cancer. Tumor Biol 37:7033–7045

    Article  CAS  Google Scholar 

  48. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci 86:291–2937

    Article  Google Scholar 

  49. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  PubMed  Google Scholar 

  50. Bonvin AM (2006) Flexible protein-protein docking. Curr Opin Struct Biol 16:194–200

    Article  CAS  PubMed  Google Scholar 

  51. Khan A, Aldebasi YH, Alsuhaibani SA, Khan MA (2019) Thymoquinone augments cyclophosphamide-mediated inhibition of cell proliferation in breast cancer cells. Asian Pacific J Cancer Prev 20:1153–1160

    Article  CAS  Google Scholar 

  52. Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y, Farajnia S (2015) Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res 93:1–10

    Article  CAS  PubMed  Google Scholar 

  53. Wei C, Zou H, Xiao T, Liu X, Wang Q, Cheng J, Fu S, Peng J, Xie X, Fu J (2021) TQFL12, a novel synthetic derivative of TQ, inhibits triple-negative breast cancer metastasis and invasion through activating AMPK/ACC pathway. J Cell Mol Med 25:10101–10110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Thanos CD, Bowie JU (1999) p53 Family members p63 and p73 are SAM domain-containing proteins. Protein Sci 8:1708–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blackburn PR, Milosevic D, Marek T, Folpe AL, Howe BM, Spinner RJ, Carter JM (2020) PIK3CA mutations in lipomatosis of nerve with or without nerve territory overgrowth. Mod Pathol 33:420–430

    Article  CAS  PubMed  Google Scholar 

  56. Gasch C, Oldopp T, Mauermann O, Gorges TM, Andreas A, Coith C, Muller V, Fehm T, Janni W, Pantel K, Riethdorf S (2016) Frequent detection of PIK3CA mutations in single circulating tumor cells of patients suffering from HER2-negative metastatic breast cancer. Mol Oncol 10:1330–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dogruluk T, Tsang YH, Espitia M, Chen F, Chen T, Chong Z, Appadurai V, Dogruluk A, Eterovic AK, Bonnen PE, Creighton CJ, Chen K, Mills GB, Scott KL (2015) Identification of variant-specific functions of PIK3CA by rapid phenotyping of rare mutations. Can Res 75:5341–5354

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank people in Junjiang Fu’ laboratory for help in this project.

Funding

This work was supported by the National Natural Science Foundation of China (81672887, 82073263) to JF.

Author information

Authors and Affiliations

Authors

Contributions

JF conceived and coordinated the study. JZ conducted the experiments. JZ, GL, JF analyzed and interpreted data. SI, TL, MDS performed bioinformatics analysis. JF, JZ and SI wrote the manuscript. All of the authors approved the final manuscript.

Corresponding author

Correspondence to Junjiang Fu.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 2115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Imani, S., Shasaltaneh, M.D. et al. PIK3CA hotspot mutations p. H1047R and p. H1047L sensitize breast cancer cells to thymoquinone treatment by regulating the PI3K/Akt1 pathway. Mol Biol Rep 49, 1799–1816 (2022). https://doi.org/10.1007/s11033-021-06990-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06990-x

Keywords

Navigation