Skip to main content

Advertisement

Log in

Genome-editing in millets: current knowledge and future perspectives

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Millets are small seeded cereal crops predominantly cultivated and consumed by resource-poor farmers in the semi-arid tropics of Asia and Africa. Millets possess rich nutrients and a climate resilience property when compared to the other cereals such as rice and wheat. Millet improvement using modern genetic and genomic tools is falling behind other cereal crops due to their cultivation being restricted to less developed countries. Genome editing tools have been successfully applied to major cereal crops and, as a result, many key traits have been introduced into rice, wheat and maize. However, genome editing tools have not yet been used for most millets although they possess rich nutrients. The foxtail millet is the only millet utilised up to now for genome editing works. Limited genomic resources and lack of efficient transformation systems may slow down genome editing in millets. As millets possess many important traits of agricultural importance, high resolution studies with genome editing tools will help to understand the specific mechanism and transfer such traits to major cereals in the future. This review covers the current status of genome editing studies in millets and discusses the future prospects of genome editing in millets to understand key traits of nutrient fortification and develop climate resilient crops in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ceasar S, Maharajan T, Ajeesh Krishna TP et al (2018) Finger millet [Eleusine coracana (L.) Gaertn.] improvement: current status and future interventions of whole genome sequence. Front Plant Sci 9:1054

    Article  Google Scholar 

  2. Vetriventhan M, Azevedo VCR, Upadhyaya HD et al (2020) Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions. Nucleus 63:217–239. https://doi.org/10.1007/s13237-020-00322-3

    Article  Google Scholar 

  3. Ceasar SA, Rajan V, Prykhozhij SV (2016) Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochim Biophys Acta 1863:2333–2344

    Article  CAS  PubMed  Google Scholar 

  4. Manghwar H, Lindsey K, Zhang X, Jin S (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 24:1102–1125

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264. https://doi.org/10.1146/annurev-biochem-060815-014607

    Article  CAS  PubMed  Google Scholar 

  6. Chen K, Wang Y, Zhang R et al (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697. https://doi.org/10.1146/annurev-arplant-050718-100049

    Article  CAS  PubMed  Google Scholar 

  7. Hillary VE, Ceasar SA (2019) Application of CRISPR/Cas9 genome editing system in cereal crops. Open Biotechnol J. https://doi.org/10.2174/1874070701913010173

    Article  Google Scholar 

  8. Langner T, Kamoun S, Belhaj K (2018) CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol 56:479–512. https://doi.org/10.1146/annurev-phyto-080417-050158

    Article  CAS  PubMed  Google Scholar 

  9. Song G, Jia M, Chen K et al (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J 4:75–82

    Article  Google Scholar 

  10. Zaidi SS-A, Mahas A, Vanderschuren H, Mahfouz MM (2020) Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol 21:289. https://doi.org/10.1186/s13059-020-02204-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhu H, Li C, Gao C (2020) Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21:661–677. https://doi.org/10.1038/s41580-020-00288-9

    Article  CAS  PubMed  Google Scholar 

  12. Ceasar SA, Ignacimuthu S (2009) Genetic engineering of millets: current status and future prospects. Biotechnol Lett 31:779–788. https://doi.org/10.1007/s10529-009-9933-4

    Article  CAS  PubMed  Google Scholar 

  13. Shobana S, Krishnaswamy K, Sudha V, Malleshi NG, Anjana RM, Palaniappan L, Mohan V (2013) Finger millet (Ragi, Eleusine coracana L.): a review of its nutritional properties, processing, and plausible health benefits. Adv Food Nut Res 69:1–39. https://doi.org/10.1016/B978-0-12-410540-9.00001-6

    Article  CAS  Google Scholar 

  14. Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB (2014) Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Techn 51:1021–1040. https://doi.org/10.1007/s13197-011-0584-9

    Article  CAS  Google Scholar 

  15. Maharajan T, Ceasar SA, Krishna ATP, Ignacimuthu S (2021) Finger millet [Eleusine coracana (L.) Gaertn]: an orphan crop with a potential to alleviate the calcium deficiency in the semi-arid tropics of Asia and Africa. Front Sust Food Syst 5:258. https://doi.org/10.3389/fsufs.2021.684447

    Article  Google Scholar 

  16. Saha D, Gowda MVC, Arya L, Verma M, Bansal KC (2016) Genetic and genomic resources of small millets. Crit Rev Plant Sci 35:56–79

    Article  CAS  Google Scholar 

  17. Saleh ASM, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295. https://doi.org/10.1111/1541-4337.12012

    Article  CAS  Google Scholar 

  18. Puranik S, Kam J, Sahu PP et al (2017) Harnessing finger millet to combat calcium deficiency in humans: challenges and prospects. Front Plant Sci 8:1311

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang LZ, Liu RH (2015) Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet. Food Chem 174:495–501. https://doi.org/10.1016/j.foodchem.2014.09.089

    Article  CAS  PubMed  Google Scholar 

  20. Hadimani N, Muralikrishna G, Tharanathan R, Malleshi N (2001) Nature of carbohydrates and proteins in three pearl millet varieties varying in processing characteristics and kernel texture. J Cereal Sci 33:17–25

    Article  CAS  Google Scholar 

  21. Antony U, Sripriya G, Chandra TS (1996) Effect of fermentation on the primary nutrients in finger millet (Eleusine coracana). J Agric Food Chem 44:2616–2618. https://doi.org/10.1021/jf950787q

    Article  CAS  Google Scholar 

  22. Nambiar V, Dhaduk J, Sareen N, Shahu T, Desai R (2011) Potential functional implications of Pearl millet (Pennisetum glaucum) in health and disease. J Appl Pharm Sci 1:62–67

    Google Scholar 

  23. Watanabe M (1999) Antioxidative phenolic compounds from Japanese barnyard millet (Echinochloa utilis) grains. J Agric Food Chem 47:4500–4505. https://doi.org/10.1021/jf990498s

    Article  CAS  PubMed  Google Scholar 

  24. Radhika G, Sathya RM, Ganesan A, Saroja R, Vijayalakshmi P, Sudha V, Mohan V (2011) Dietary profile of urban adult population in South India in the context of chronic disease epidemiology (CURES-68). Public Health Nutr 14:591–598. https://doi.org/10.1017/S136898001000203X

    Article  PubMed  Google Scholar 

  25. Singh P, Raghuvanshi RS (2012) Finger millet for food and nutritional security. Afr J Food Sci 6:77–84

    CAS  Google Scholar 

  26. Gaj T, Sirk SJ, Shui S-L, Liu J (2016) Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 8:a023754. https://doi.org/10.1101/cshperspect.a023754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kamburova VS, Nikitina EV, Shermatov SE et al (2017) Genome editing in plants: an overview of tools and applications. Int J Agron 2017:7315351. https://doi.org/10.1155/2017/7315351

    Article  CAS  Google Scholar 

  28. Nadakuduti SS, Buell CR, Voytas DF et al (2018) Genome editing for crop improvement-applications in clonally propagated polyploids with a focus on potato (Solanum tuberosum L.). Front Plant Sci 9:1607

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Zhang H, Botella JR, Zhu J-K (2018) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60:369–375. https://doi.org/10.1111/jipb.12620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ricroch A (2019) Global developments of genome editing in agriculture. Trans Res 28:45–52. https://doi.org/10.1007/s11248-019-00133-6

    Article  CAS  Google Scholar 

  31. Zhang Y, Li D, Zhang D, Zhao X, Cao X, Dong L, Liu J, Chen K, Zhang H, Gao C, Wang D (2018) Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J 94:857–866. https://doi.org/10.1111/tpj.13903

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biol 19:210. https://doi.org/10.1186/s13059-018-1586-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom JS, Li C, Nguyen H, Liu B, Auguy F, Sciallano C, Luu VT, Dossa GS, Cunnac S, Schmidt SM, Slamet-Loedin IH, Vera Cruz C, Szurek B, Yang B (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotech 37:1344–1350. https://doi.org/10.1038/s41587-019-0267-z

    Article  CAS  Google Scholar 

  34. Xu Z, Xu X, Gong Q, Li Z, Li Y, Wang S, Yang Y, Ma W, Liu L, Zhu B, Zou L, Chen G (2019) Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol Plant 12:434–1446. https://doi.org/10.1016/j.molp.2019.08.006

    Article  CAS  Google Scholar 

  35. Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants 3:17043. https://doi.org/10.1038/nplants.2017.43

    Article  CAS  PubMed  Google Scholar 

  36. Zeng Y, Wen J, Zhao W, Wang Q, Huang W (2020) rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Fronti Plant Sci 10:1663. https://doi.org/10.3389/fpls.2019.01663

    Article  Google Scholar 

  37. Zhou J, Xin X, He Y, Chen H, Li Q, Tang X, Zhong Z, Deng K, Zheng X, Akher SA, Cai G, Qi Y, Zhang Y (2019) Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Rep 38:475–485. https://doi.org/10.1007/s00299-018-2340-3

    Article  CAS  PubMed  Google Scholar 

  38. Ansari WA, Chandanshive SU, Bhatt V et al (2020) Genome editing in cereals: approaches, applications and challenges. Int J Mol Sci 21:4040. https://doi.org/10.3390/ijms21114040

    Article  CAS  PubMed Central  Google Scholar 

  39. Zhu C, Bortesi L, Baysal C et al (2017) Characteristics of genome editing mutations in cereal crops. Trends Plant Sci 22:38–52. https://doi.org/10.1016/j.tplants.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  40. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395–2410. https://doi.org/10.1038/nprot.2014.157

    Article  CAS  PubMed  Google Scholar 

  41. Wang Y, Cheng X, Shan Q et al (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Bai Y, Wu G et al (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714–724. https://doi.org/10.1111/tpj.13599

    Article  CAS  PubMed  Google Scholar 

  43. Wang F, Wang C, Liu P et al (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11:e0154027

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jiang M, Liu Y, Liu Y et al (2019) Mutation of inositol 1,3,4-trisphosphate 5/6-kinase6 impairs plant growth and phytic acid synthesis in rice. Plants 8:114

    Article  CAS  PubMed Central  Google Scholar 

  45. Lu Y, Zhu J-K (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525. https://doi.org/10.1016/j.molp.2016.11.013

    Article  CAS  PubMed  Google Scholar 

  46. Zhu J, Song N, Sun S et al (2016) Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. J Genet Genom 43:25–36. https://doi.org/10.1016/j.jgg.2015.10.006

    Article  Google Scholar 

  47. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6:1975–1983. https://doi.org/10.1093/mp/sst119

    Article  CAS  PubMed  Google Scholar 

  48. Macovei A, Sevilla NR, Cantos C et al (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16:1918–1927. https://doi.org/10.1111/pbi.12927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mao X, Zheng Y, Xiao K et al (2018) OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochem Biophys Res Commun 495:461–467. https://doi.org/10.1016/j.bbrc.2017.11.045

    Article  CAS  PubMed  Google Scholar 

  50. Tang L, Mao B, Li Y et al (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438. https://doi.org/10.1038/s41598-017-14832-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang A, Liu Y, Wang F et al (2019) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Mol Breed 39:47. https://doi.org/10.1007/s11032-019-0954-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumar A, Tomer V, Kaur A, Kumar V, Gupta K (2018) Millets: a solution to agrarian and nutritional challenges. Agric Food Sec 7(1):31. https://doi.org/10.1186/s40066-018-0183-3

    Article  Google Scholar 

  53. Krishna TPA, Ceasar SA, Maharajan T, Ramakrishnan M, Duraipandiyan V, Al-Dhabi N, Ignacimuthu S (2017) Improving the zinc-use efficiency in plants: A review. SABRAO J Breed Genet 49:221–230

  54. Ceasar SA, Hodge A, Baker A, Baldwin SA (2014) Phosphate concentration and arbuscular mycorrhizal colonisation influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica). PLoS ONE. https://doi.org/10.1371/journal.pone.0108459

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nadeem F, Ahmad Z, Wang R, Han J, Shen Q, Chang F, Diao X, Zhang F, Li X (2018) Foxtail millet [Setaria italica (L.) Beauv.] grown under low nitrogen shows a smaller root system, enhanced biomass accumulation, and nitrate transporter expression. Front Plant Sci 9:205. https://doi.org/10.3389/fpls.2018.00205

    Article  PubMed  PubMed Central  Google Scholar 

  56. Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S (2019) Phosphate supply influenced the growth, yield and expression of PHT1 family phosphate transporters in seven millets. Planta 250:1433–1448

    Article  CAS  PubMed  Google Scholar 

  57. Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail Millet: a sequence-driven grass model system. Plant Physiol 149:137–141. https://doi.org/10.1104/pp.108.129627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561. https://doi.org/10.1038/nbt.2196

    Article  CAS  PubMed  Google Scholar 

  59. Zhang G, Liu X, Quan Z et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549

    Article  CAS  PubMed  Google Scholar 

  60. Lin C-S, Hsu C-T, Yang L-H et al (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16:1295–1310. https://doi.org/10.1111/pbi.12870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cheng Z, Sun Y, Yang S et al (2021) Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J. https://doi.org/10.1111/pbi.13584

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hittalmani S, Mahesh HB, Shirke MD et al (2017) Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 18:465. https://doi.org/10.1186/s12864-017-3850-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Varshney RK, Shi C, Thudi M et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976. https://doi.org/10.1038/nbt.3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zou C, Li L, Miki D et al (2019) The genome of broomcorn millet. Nat Commun 10:436. https://doi.org/10.1038/s41467-019-08409-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li G, Jain R, Chern M et al (2017) The sequences of 1504 mutants in the model rice variety kitaake facilitate rapid functional genomic studies. Plant Cell 29:1218–1231. https://doi.org/10.1105/tpc.17.00154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li S, Zheng Y, Cui H et al (2016) Frequency and type of inheritable mutations induced by γ rays in rice as revealed by whole genome sequencing. J Zhejiang Univ B 17:905–915. https://doi.org/10.1631/jzus.B1600125

    Article  CAS  Google Scholar 

  67. Tang X, Liu G, Zhou J et al (2018) A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol 19:84. https://doi.org/10.1186/s13059-018-1458-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jiao Y, Burke J, Chopra R et al (2016) A sorghum mutant resource as an efficient platform for gene discovery in grasses. Plant Cell 28:1551–1562. https://doi.org/10.1105/tpc.16.00373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tsuda M, Kaga A, Anai T et al (2015) Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genomics 16:1014. https://doi.org/10.1186/s12864-015-2079-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Belfield EJ, Gan X, Mithani A et al (2012) Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Res 22:1306–1315. https://doi.org/10.1101/gr.131474.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hofmann NR (2016) A breakthrough in monocot transformation methods. Plant Cell 28:1989. https://doi.org/10.1105/tpc.16.00696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hiei Y, Ishida Y, Komari T (2014) Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front Plant Sci 5:628

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603. https://doi.org/10.1111/j.1467-7652.2006.00209.x

    Article  CAS  PubMed  Google Scholar 

  74. Sood P, Singh RK, Prasad M (2019) Millets genetic engineering: the progress made and prospects for the future. Plant Cell Tissue Organ Cult’ 137:421–439. https://doi.org/10.1007/s11240-019-01587-6

    Article  CAS  Google Scholar 

  75. Satish L, Ceasar SA, Ramesh M (2017) Improved Agrobacterium-mediated transformation and direct plant regeneration in four cultivars of finger millet (Eleusine coracana (L.) Gaertn.). Plant Cell Tissue Organ Cult 131:547–565. https://doi.org/10.1007/s11240-017-1305-5

    Article  CAS  Google Scholar 

  76. Ceasar S, Ignacimuthu S (2011) Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Rep 30:1759–1770. https://doi.org/10.1007/s00299-011-1084-0

    Article  CAS  PubMed  Google Scholar 

  77. Ignacimuthu S, Ceasar SA (2012) Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci. https://doi.org/10.1007/s12038-011-9178-y

    Article  PubMed  Google Scholar 

  78. Yinghui L, Jingjuan Y, Qian Z et al (2005) Genetic transformation of millet (Tetaria italica) by Agrobacterium-mediated. Nong ye sheng wu ji shu xue bao =. J Agric Biotechnol 13:32–37

    Google Scholar 

  79. Ceasar SA, Baker A, Ignacimuthu S (2017) Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure. Sci Rep 7:14064. https://doi.org/10.1038/s41598-017-14447-0

  80. Santos CM, Romeiro D, Silva JP et al (2020) An improved protocol for efficient transformation and regeneration of Setaria italica. Plant Cell Rep 39:501–510. https://doi.org/10.1007/s00299-019-02505-y

    Article  CAS  PubMed  Google Scholar 

  81. Sood P, Singh RK, Prasad M (2020) An efficient Agrobacterium-mediated genetic transformation method for foxtail millet (Setaria italica L.). Plant Cell Rep 39:511–525. https://doi.org/10.1007/s00299-019-02507-w

    Article  CAS  PubMed  Google Scholar 

  82. Gupta P, Raghuvanshi S, Tyagi A (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282. https://doi.org/10.5511/plantbiotechnology.18.275

    Article  CAS  Google Scholar 

  83. Bhatt R, Asopa PP, Jain R, Kothari-Chajer A, Kothari SL, Kachhwaha S (2021) Optimization of Agrobacterium-mediated genetic transformation in Paspalum scrobiculatum L. (kodo millet). Agronomy 11:1104. https://doi.org/10.3390/agronomy11061104

    Article  CAS  Google Scholar 

  84. Yang Z, Zhang H, Li X et al (2020) A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants 6:1167–1178. https://doi.org/10.1038/s41477-020-0747-7

    Article  CAS  PubMed  Google Scholar 

  85. Fraiture MA, Roosens NHC, Taverniers I et al (2016) Biotech rice: current developments and future detection challenges in food and feed chain. Trends Food Sci Technol 52:66–79. https://doi.org/10.1016/j.tifs.2016.03.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr David Pilbeam, Visiting Research Fellow, University of Leeds for critically reading the manuscript.

Funding

The research works in our lab are funded by the Department of Biotechnology, Govt. of India under Grant No: BT/PR21321/GET/119/76/2016.

Author information

Authors and Affiliations

Authors

Contributions

SAC conceptualized, drafted, edited, and produced the manuscript.

Corresponding author

Correspondence to Antony Ceasar.

Ethics declarations

Conflict of interest

The author declares that no conflict of interest exists.

Consent to participate

This article does not involve any clinical studies that need consent of participants.

Consent to publish

This article does not involve any clinical studies that need consent of participants to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceasar, A. Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep 49, 773–781 (2022). https://doi.org/10.1007/s11033-021-06975-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06975-w

Keywords

Navigation