Skip to main content

Advertisement

Log in

Rapid visual genotyping method for germline mutants with small genomic fragment deletion by allele-specific PCR and lateral flow nucleic acid biosensor

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Genome-editing techniques incorporating artificial nucleases develop rapidly and enable efficient and precise modification of genomic DNA of numerous organisms. The present research aimed to establish a rapid, sensitive and visual method for genotyping of germline genome-edited mutants with small genomic fragment deletion.

Methods and Results

The genome-edited pigs with 2-bp deletion and 11-bp deletion of Myostatin (MSTN) gene generated by TALENs system were used as test materials to check the proposed allele-specific PCR (AS-PCR) and lateral flow nucleic acid biosensor (LFNAB) cascade method. AS-PCR can produce products with different tags to distinguish genome-edited alleles and wild-type alleles. A LFNAB was applied to do visual detection of AS-PCR products without using additional instruments. Furthermore, we demonstrated that AS-PCR and LFNAB cascade could accurately and visually distinguish genome-edited pigs with small genomic fragment deletion of Myostatin (MSTN) gene and wild-type pigs with limit of detection (LOD) of 0.1 ng.

Conclusion

The proposed AS-PCR and LFNAB cascade can do rapid and visual genotyping of genome-edited mutants with small genomic fragment deletion, serving as a platform for genome-edited animal genotyping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  2. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baker M (2012) Gene-editing nucleases. Nat Methods 9:23–26

    Article  CAS  PubMed  Google Scholar 

  5. Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D (2015) Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5:16623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, Hao Y, Wax DM, Murphy CN, Rieke A, Samuel M, Linville ML, Korte SW, Evans RW, Starzl TE, Prather RS, Dai Y (2006) Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24:435–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CB, Archibald AL (2017) Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens 13:e1006206

    Article  PubMed  PubMed Central  Google Scholar 

  8. Carlson DF, Lancto CA, Zang B, Kim ES, Walton M, Oldeschulte D, Seabury C, Sonstegard TS, Fahrenkrug SC (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34:479–481

    Article  CAS  PubMed  Google Scholar 

  9. Yang Z, Steentoft C, Hauge C, Hansen L, Thomsen AL, Niola F, Vester-Christensen MB, Frödin M, Clausen H, Wandall HH, Bennett EP (2015) Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res 43:e59

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jazayeri SH, Amiri-Yekta A, Bahrami S, Gourabi H, Sanati MH, Khorramizadeh MR (2018) Vector and cell line engineering technologies toward recombinant protein expression in mammalian cell lines. Appl Biochem Biotechnol 185:986–1003

    Article  CAS  PubMed  Google Scholar 

  11. Kim JM, Kim D, Kim S, Kim JS (2014) Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat Commun 6:3292

    Article  Google Scholar 

  12. Ota S, Hisano Y, Ikawa Y, Kawahara A (2014) Multiple genome modifications by the CRISPR/Cas9 system in zebrafish. Genes Cells 19:55564

    Article  Google Scholar 

  13. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the Zebrafish genome. PLoS Genet 8:e1002861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xing L, Hoshijima K, Grunwald DJ, Fujimoto E, Quist TS, Sneddon J, Chien CB, Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228

    Article  Google Scholar 

  16. Goodwin S, Mcpherson JD, Mccombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  17. Hua Y, Wang C, Huang J, Wang K (2017) A simple and efficient method for CRISPR/Cas9-induced mutant screening. J Genet Genom 44:207–213

    Article  Google Scholar 

  18. Mo CH, Cheong WC, Li SL, Li MH (2012) A simple, high sensitivity mutation screening using Ampligase mediated T7 endonuclease I and Surveyor nuclease with microfluidic capillary electrophoresis. Electrophoresis 33(5):788–796

    Article  Google Scholar 

  19. Erali M, Voelkerding KV, Wittwer CT (2008) High resolution melting applications for clinical laboratory medicine. Exp Mol Pathol 85:50–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu S, He L, Yu F, Liu L, Qu C, Qu L, Liu J, Wu Y, Wu Y (2018) A lateral flow assay for simultaneous detection of Deoxynivalenol, Fumonisin B1 and Aflatoxin B1. Toxicon 156:23–27

    Article  CAS  PubMed  Google Scholar 

  21. Cheng N, Xu Y, Huang K, Chen Y, Yang Z, Luo Y, Xu W (2017) One-step competitive lateral flow biosensor running on an independent quantification system for smart phones based in-situ detection of trace Hg(II) in tap water. Food Chem 214:169–175

    Article  CAS  PubMed  Google Scholar 

  22. Xu W, Cheng N, Huang K, Lin Y, Wang C, Xu Y, Zhu L, Du D, Luo Y (2016) Accurate and easy-to-use assessment of contiguous DNA methylation sites based on proportion competitive quantitative-PCR and lateral flow nucleic acid biosensor. Biosensors Bioelectronics 80:654–660

    Article  CAS  PubMed  Google Scholar 

  23. Ge C, Yu L, Fang Z, Zeng L (2013) An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem 85:9343–9349

    Article  CAS  PubMed  Google Scholar 

  24. De Souza Sene I, Costa V, Pauli GEN, Bechtold IH, Nunes LCC, Eiras C, Costa CHN (2018) Lateral flow assay for interleukin 6: a technological and scientific prospection of a 10-year survey, recent pat. Biotechnology 12:221–228

    Google Scholar 

  25. Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y (2010) Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem 82:7008–7014

    Article  CAS  PubMed  Google Scholar 

  26. Gao X, Xu LP, Wu T, Wen Y, Ma X, Zhang X (2016) An enzyme-amplified lateral flow strip biosensor for visual detection of microRNA-224. Talanta 146:648–654

    Article  CAS  PubMed  Google Scholar 

  27. Gomez-Martinez J, Silvy M, Chiaroni J, Fournier-Wirth C, Roubinet F, Bailly P, Brès JC (2018) Multiplex lateral flow assay for rapid visual blood group genotyping. Anal Chem 90:7502–7509

    Article  CAS  PubMed  Google Scholar 

  28. Anfossi L, D’Arco G, Calderara M, Baggiani C, Giovannoli C, Giraudi G (2011) Development of a quantitative lateral flow immunoassay for the detection of aflatoxins in maize. Food Additives Contaminants: Part A 28:226–234

    Article  CAS  Google Scholar 

  29. Cho IH, Bhunia A, Irudayaraj J (2015) Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification. Int J Food Microbiol 206:60–66

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Wen J, Zhuang L, Zhou S (2016) An enzyme-free catalytic DNA circuit for amplified detection of aflatoxin B1 using gold nanoparticles as colorimetric indicators. Nanoscale 8:9791–9797

    Article  CAS  PubMed  Google Scholar 

  31. Zou Z, Du D, Wang J, Smith JN, Timchalk C, Li Y, Lin Y (2010) Quantum dot-based immunochromatographic fluorescent biosensor for biomonitoring trichloropyridinol, a biomarker of exposure to chlorpyrifos. Anal Chem 82:5125–5133

    Article  CAS  PubMed  Google Scholar 

  32. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, Wen T, Li X, Wan Abas WA, Pingguan-Murphy B, Xu F (2015) An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. Lab Chip 16:611–621

    Article  Google Scholar 

  33. Cheng N, Wang Q, Shang Y, Xu Y, Huang K, Yang Z, Pan D, Xu W, Luo Y (2018) Rapid and low-cost strategy for detecting genome-editing induced deletion: a single-copy case. Anal Chim Acta 101:111–118

    Article  Google Scholar 

  34. He Y, Zeng K, Zhang S, Gurung AS, Baloda M, Zhang X, Liu G (2012) Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip. Biosens Bioelectron 31:310–315

    Article  CAS  PubMed  Google Scholar 

  35. Waterfall CM, Cobb BD (2001) Single tube genotyping of sickle cell anaemia using PCR based SNP analysis. Nucleic Acids Res 29:e119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, Smith JC, Markham AF (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic acids research 17:2503–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He Q, Chen M, Lin X, Chen Z (2020) Allele-specific PCR with a novel data processing method based on difference value for single nucleotide polymorphism genotyping of ALDH2 gene. Talanta 220:121432

    Article  CAS  PubMed  Google Scholar 

  38. Kang JH, Yu KH, Park JY, An CM, Jun JC, Lee SJ (2011) Allele-specific PCR genotyping of the HSP70 gene polymorphism discriminating the green and red color variants sea cucumber (Apostichopus japonicus). J Genet Genomics 38:351–355

    CAS  PubMed  Google Scholar 

  39. Trimmer K, Arur S (2021) CRISPR-edit point mutant allele detection (CEPAD)-PCR method for rapid screening of CRISPR edited point mutations. Micro Publication Biology. https://doi.org/10.17912/micropub.biology.000368

  40. Yu C, Zhang Y, Yao S, Wei Y (2014) A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish. PLoS ONE 9:e98282

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bell CC, Magor GW, Gillinder KR, Perkins AC (2014) A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing. BMC Genomics 15:1002

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hendel A, Fine EJ, Bao G, Porteus MH (2015) Quantifying on-and off-target genome editing. Trends Biotechnol 33:132–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Findlay SD, Vincent KM, Berman JR, Postovit LM (2016) A digital PCR-based method for efficient and highly specific screening of genome edited cells. PLoS ONE 11:e0153901

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31802040 and 32172699).

Author information

Authors and Affiliations

Authors

Contributions

QS, XZ and BL conceived of the AS-PCR and LFNAB cascade method. QS performed the experiments. TW and KL contributed materials. QS and XZ wrote the manuscript. XZ, LB, WX, ZL, and PS edited the manuscript.

Corresponding author

Correspondence to Bang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 275.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q., Zhou, X., Wu, T. et al. Rapid visual genotyping method for germline mutants with small genomic fragment deletion by allele-specific PCR and lateral flow nucleic acid biosensor. Mol Biol Rep 48, 7325–7332 (2021). https://doi.org/10.1007/s11033-021-06734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06734-x

Keywords

Navigation