Skip to main content
Log in

ATP-binding cassette transporters expression profiling revealed its role in the development and regulating stress response in Solanum tuberosum

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The ATP-binding cassette (ABC) transporter gene family plays a vital role in substance transportation, including secondary metabolites, and phytohormones across membranous structures. It is still uncovered in potato (Solanum tuberosum), grown worldwide as a 3rd important food crop. The current study identified a total of 54 Stabc genes in potato genome. The accumulative phylogenetic tree of Stabc with arabidopsis, divided into eight groups (ABCA to ABCH). ABCG was the most prominent group covering 90% of Stabc genes, followed by ABCB group. The number and architecture of exon–intron varied from gene to gene. In addition, the presence of stress-responsive elements in the regulatory regions depicted their role in environmental stress. Furthermore, the tissue-specific and stress-specific expression profiling of Stabc genes and their validation through real-time-qPCR analysis revealed their role in development and stress. The presented results provided useful information for further functional analysis of Stabc genes and can also use as a reference study for other important crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jones P, George A (2004) The ABC transporter structure and mechanism: perspectives on recent research. CMLS 61:682–699

    Article  CAS  PubMed  Google Scholar 

  2. Sánchez-Fernández R, Davies TE, Coleman JO, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276:30231–30244

    Article  PubMed  Google Scholar 

  3. Lopez-Ortiz C, Dutta SK, Natarajan P, Peña-Garcia Y, Abburi V, Saminathan T, Nimmakayala P, Reddy UK (2019) Genome-wide identification and gene expression pattern of ABC transporter gene family in capsicum spp. PloS one 14:e0215901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharom FJ, Kretzschmar T, Burla B, Lee Y, Martinoia E, Nagy R (2011) Functions of ABC transporters in plants. Essays Biochem 50:145–160

    Article  Google Scholar 

  5. Zhiyi N, Guijuan K, Yu L, Longjun D, Rizhong Z (2015) Whole-transcriptome survey of the putative ATP-binding cassette (ABC) transporter family genes in the latex-producing laticifers of Hevea brasiliensis. PLoS One 10:e0116857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Borghi L, Kang J, Ko D, Lee Y, Martinoia E (2015) The role of ABCG-type ABC transporters in phytohormone transport. Biochem Soc Trans 43:924–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kang J, Hwang J-U, Lee M, Kim Y-Y, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci 107:2355–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim KY, Kwon M, Endler A, Song W-Y (2014) Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci 111:7150–7155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin P, Tu B, Wang Y, Deng L, Quilichini TD, Li T, Wang H, Ma B, Li S (2013) ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol 54:138–154

    Article  CAS  PubMed  Google Scholar 

  10. Quilichini TD, Friedmann MC, Samuels AL, Douglas CJ (2010) ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiol 154:678–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia O, Bouige P, Forestier C, Dassa E (2004) Inventory and comparative analysis of rice and Arabidopsis ATP-binding cassette (ABC) systems. J Mol Biol 343:249–265

    Article  CAS  PubMed  Google Scholar 

  12. Pang K, Li Y, Liu M, Meng Z, Yu Y (2013) Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.). Gene 526:411–428

    Article  CAS  PubMed  Google Scholar 

  13. Sugiyama A, Shitan N, Sato S, Nakamura Y, Tabata S, Yazaki K (2006) Genome-wide analysis of ATP-binding cassette (ABC) proteins in a model legume plant, Lotus japonicus: comparison with Arabidopsis ABC protein family. DNA Res 13:205–228

    Article  CAS  PubMed  Google Scholar 

  14. Çakır B, Kılıçkaya O (2013) Whole-genome survey of the putative ATP-binding cassette transporter family genes in Vitis vinifera. PloS one 8:e78860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen P, Li Y, Zhao L, Hou Z, Yan M, Hu B, Liu Y, Azam SM, Zhang Z, Liu L (2017) Genome-wide identification and expression profiling of ATP-binding cassette (ABC) transporter gene family in pineapple (Ananas comosus (L.) Merr.) reveal the role of AcABCG38 in pollen development. Front Plant Sci 8:2150

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zaynab M, Kanwal S, Hussain I, Qasim M, Noman A, Iqbal U, Ali GM, Bahadar K, Jamil A, Sughra K (2017) Rice chitinase gene expression in genetically engineered potato confers resistance against Fusarium solani and Rhizictonia solani. PSM Microbiol 2:63–73

    Google Scholar 

  17. Zaynab M, Hussain A, Sharif Y, Fatima M, Sajid M, Rehman N, Yang X, Khan KA, Ghramh HA, Li S (2021) Mitogen-activated protein kinase expression profiling revealed its role in regulating stress responses in potato (Solanum tuberosum). Plants 10:1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y, He H, He L-F (2019) Genome-wide analysis of the MATE gene family in potato. Mol Biol Rep 46:403–414

    Article  CAS  PubMed  Google Scholar 

  19. Dai LY, Liu XL, Xiao YH, Wang GL (2007) Recent advances in cloning and characterization of disease resistance genes in rice. J Integr Plant Biol 49:112–119

    Article  CAS  Google Scholar 

  20. Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K (2018) Role of secondary metabolites in plant defense against pathogens. Microb Pathog 124:198–202

    Article  CAS  PubMed  Google Scholar 

  21. Zaynab M, Sharif Y, Fatima M, Afzal MZ, Aslam MM, Raza MF, Anwar M, Raza MA, Sajjad N, Yang X (2020) CRISPR/Cas9 to generate plant immunity against pathogen. Microb Pathog 141:103996

    Article  CAS  PubMed  Google Scholar 

  22. Li G, Hou M, Liu Y, Pei Y, Ye M, Zhou Y, Huang C, Zhao Y, Ma H (2019) Genome-wide identification, characterization and expression analysis of the non-specific lipid transfer proteins in potato. BMC Genomics 20:1–14

    Google Scholar 

  23. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  24. Zaynab M, Chen H, Chen Y, Ouyang L, Yang X, Xu W, Zeng Q, Khan KA, Hassan MM, Hassan S (2021) Transcriptome analysis revealed transporter proteins role in the growth of Labrenzia sp. PO1 and SY1. J King Saud Univ Sci 33:101433

    Article  Google Scholar 

  25. Zaynab M, Cheng H, Chen Y, Ouyang L, Yang X, Hu Z, Li S (2020) Signs of biofilm formation in the genome of Labrenzia sp. PO1. Saudi J Biol Sci 28:1900–1913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zaynab M, Pan D, Fatima M, Sharif Y, Chen S, Chen W (2020) Proteomics analysis of Cyclobalanopsis gilva provides new insights of low seed germination. Biochimie 180:68–78

    Article  PubMed  CAS  Google Scholar 

  27. Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quandahor P, Gou Y, Lin C, Coulter JA, Liu C (2021) Comparison of root tolerance to drought and aphid (Myzus persicae Sulzer) resistance among different potato (Solanum tuberosum L.) cultivars. Sci Rep 11:1–13

    Article  CAS  Google Scholar 

  29. Rehman N, Khan MR, Abbas Z, Rafique RS, Zaynab M, Qasim M, Noor S, Inam S, Ali GM (2020) Functional characterization of mitogen-activated protein kinase kinase (MAPKK) gene in halophytic Salicornia europaea against salt stress. Environ Exp Bot 171:103934

    Article  CAS  Google Scholar 

  30. Flagel LE, Wendel JF (2009) Gene duplication and evolutionary novelty in plants. New Phytol 183:557–564

    Article  PubMed  Google Scholar 

  31. Moore RC, Purugganan MD (2005) The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 8:122–128

    Article  CAS  PubMed  Google Scholar 

  32. Mattick JS, Gagen MJ (2001) The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in the development of complex organisms. Mol Biol Evol 18:1611–1630

    Article  CAS  PubMed  Google Scholar 

  33. Jeffares DC, Penkett CJ, Bähler J (2008) Rapidly regulated genes are intron poor. Trends Genet 24:375–378

    Article  CAS  PubMed  Google Scholar 

  34. Wu J, Wang J, Pan C, Guan X, Wang Y, Liu S, He Y, Chen J, Chen L, Lu G (2014) Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. PloS one 9:e103032

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:575–594

    Article  PubMed  Google Scholar 

  36. Shi M, Wang S, Zhang Y, Wang S, Zhao J, Feng H, Sun P, Fang C, Xie X (2020) Genome-wide characterization and expression analysis of ATP-binding cassette (ABC) transporters in strawberry reveal the role of FvABCC11 in cadmium tolerance. Sci Hortic 271:109464

    Article  CAS  Google Scholar 

  37. Wang Z, Wan Y, Meng X, Zhang X, Yao M, Miu W, Zhu D, Yuan D, Lu K, Li J (2021) Genome-wide identification and analysis of MKK and MAPK gene families in Brassica species and response to stress in Brassica napus. Int J Mol Sci 22:544

    Article  CAS  PubMed Central  Google Scholar 

  38. Moon S, Jung K-H (2014) Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses. J Plant Physiol 171:1276–1288

    Article  PubMed  CAS  Google Scholar 

  39. Fatima M, Ma X, Zhou P, Zaynab M, Ming R (2021) Auxin regulated metabolic changes underlying sepal retention and development after pollination in spinach. BMC Plant Biol 21:1–15

    Article  CAS  Google Scholar 

  40. Zaynab M, Kanwal S, Furqan M, Islam W, Noman A, Ali GM, Rehman N, Zafar S, Sughra K, Jahanzab M (2017) Proteomic approach to address low seed germination in Cyclobalnopsis gilva. Biotech Lett 39:1441–1451

    Article  CAS  Google Scholar 

  41. Kumar K, Raina SK, Sultan SM (2020) Arabidopsis MAPK signaling pathways and their cross talks in abiotic stress response. J Plant Biochem Biotechnol 29:1–15

    Article  Google Scholar 

  42. El Guizani T, Blanc N, Triki S, St-Pierre B, Ducos E (2014) Expression pattern of AtABCC13/MRP11 reveals developmental, hormonal, and nutritional regulations. Biol Plant 58:231–240

    Article  CAS  Google Scholar 

  43. Xiong L, Lee M-W, Qi M, Yang Y (2001) Identification of defense-related rice genes by suppression subtractive hybridization and differential screening. Mol Plant Microbe Interact 14:685–692

    Article  CAS  PubMed  Google Scholar 

  44. Ruocco M, Ambrosino P, Lanzuise S, Woo SL, Lorito M, Scala F (2011) Four potato (Solanum tuberosum) ABCG transporters and their expression in response to abiotic factors and Phytophthora infestans infection. J Plant Physiol 168:2225–2233

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Shenzhen Sustainable Development Science and Technology Project (KCXFZ20201221173404012, KCXFZ20201221173211033) and and International Foundation for Science (IFS: C-6501-1).The authors appreciate the support of the Research Center for Advanced Materials Science (RCAMS) at King Khalid University Abha, Saudi Arabia through a Grant KKU/RCAMS/G002-21.

Author information

Authors and Affiliations

Authors

Contributions

MZ designed the study. MZ, AH, KB and YS conducted the experiments and analyzed the data. KS, MS, MAR, XY, KAK contributed to writing and editing the manuscript. ZW, SL supervised the project. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shuangfei Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict to interest.

Informed consent

All authors informed consent.

Consent to publish

All authors approved the version to be published and agree to be accountable for all aspects of the work in ensuring related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaynab, M., Wang, Z., Hussain, A. et al. ATP-binding cassette transporters expression profiling revealed its role in the development and regulating stress response in Solanum tuberosum. Mol Biol Rep 49, 5251–5264 (2022). https://doi.org/10.1007/s11033-021-06697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06697-z

Keywords

Navigation