Skip to main content
Log in

The first report of RNA U to C or G editing in the mitochondrial NADH dehydrogenase subunit 5 (Nad5) transcript of wild barley

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Nad dehydrogenase complex in mtDNA has a significant role in cellular respiration. One of the largest subunits in the complex is subunit 5 (Nad5).

Methods and results

Four cDNAs of the Hordeum vulgare subsp. spontaneum nad5 gene have been characterized and subjected to four phases of 0.5 M salinity, at 0 h (control, accession no. MT235236), after 2 h (acc. no. MT235237), after 12 h (acc. no. MT235238) and after 24 h (acc. no. MT235239). Utilizing raw data from RNA-seq, ten RNA editing sites were reported. Seven sites have common editing from C to U in positions (C1490, C1859, C1895, C1900, C1901, C1916, C1918). A rare editing event U to C was detected in two positions (U1650 and U1652) and a novel editing event U to G was for the first time in positions nad5-U231. The highest editing level was shown in 2 and 12 h after salinity exposure. After 24 h, these edits were disrupted, possibly due to the launch of the programed cell death mechanism. However, the RNA editing in positions U1650, U1652 and U231 was fixed at all exposure times.

Conclusions

Although study clarified the role of salinity stress in nad5 RNA editing sites, the main achievements are first report of U to G RNA editing in plants at position U231 and first report of U to C editing in the nad5 gene at U1650 and U1652.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study is included in this published article [and its supplementary information files].

References

  1. Nishikura K (2006) Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol 7(12):919–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Farajollahi S, Maas S (2010) Molecular diversity through RNA editing: a balancing act. Trends Genet 26(5):221–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benne R, Van den Burg J, Brakenhoff JP, Sloof P, Van Boom JH, Tromp MC (1986) Major transcript of the frame shifted coxII gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46(6):819–826

    Article  CAS  PubMed  Google Scholar 

  4. Maris C, Masse J, Chester A, Navaratnam N, Allain FH (2005) Structure of the apoB mRNA stem-loop and its interaction with the C to U editing APOBEC1 complementary factor. RNA 11(2):173–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castandet B, Araya A (2011) RNA editing in plant organelles. Why make it easy? Biochemistry (Mosc) 76(8):924–931

    Article  CAS  Google Scholar 

  6. Takenaka M, Jörg A, Burger M, Haag S (2019) RNA editing mutants as surrogates for mitochondrial SNP mutants. Plant Physiol Biochem 135:310–321

    Article  CAS  PubMed  Google Scholar 

  7. Ruwe H, Castandet B, Schmitz-Linneweber C, Stern DB (2013) Arabidopsis chloroplast quantitative editotype. FEBS Lett 587:1429–1433

    Article  CAS  PubMed  Google Scholar 

  8. Bentolila S, Oh J, Hanson MR, Bukowski R (2013) Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genet 9:e1003584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Licht K, Jantsch MF (2016) Rapid and dynamic transcriptome regulation by RNA editing and RNA modifications. J Cell Biol 213(1):15–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Picardi E, D’Erchia AM, Gallo A, Montalvo A, Pesole G (2014) Uncovering RNA editing sites in long non-coding RNAs. Front Bioeng Biotechnol 2:64

    Article  PubMed  PubMed Central  Google Scholar 

  11. Edera AA, Gandini CL, Sanchez-Puerta MV (2018) Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. Plant Mol Biol 97(3):215–231

    Article  CAS  PubMed  Google Scholar 

  12. Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH (2013) Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues. Plant Mol Biol 82(4–5):375–392

    Article  CAS  PubMed  Google Scholar 

  13. Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A (2008) The process of RNA editing in plant mitochondria. Mitochondrion 8(1):35–46

    Article  CAS  PubMed  Google Scholar 

  14. Wang C, Chen X, Li H, Song W (2007) RNA editing analysis of mitochondrial nad3/rps12 genes in cytoplasmic male sterility and male-fertile cauliflower (Brassica oleracea var. botrytis) by cDNA-SSCP. Bot Stud 48(1):13–23

    Article  CAS  Google Scholar 

  15. Knie N, Grewe F, Fischer S, Knoop V (2016) Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns—a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles. BMC Evol Biol 16:134

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yuan H, Liu D (2012) Functional disruption of the pentatricopeptide protein SLG1affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in Arabidopsis. Plant J 70:432–444

    Article  CAS  PubMed  Google Scholar 

  17. Lo Giudice C, Hernández I, Ceci LR, Pesole G, Picardi E (2019) RNA editing in plants: a comprehensive survey of bioinformatics tools and databases. Plant Physiol Biochem 137:53–61

    Article  CAS  PubMed  Google Scholar 

  18. Bahieldin A, Atef A, Sabir JS, Gadalla NO, Edris S, Alzohairy AM, Radhwan NA, Baeshen MN, Ramadan AM, Eissa HF et al (2015) RNA-seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress. C R Biol 338(5):285–297

    Article  PubMed  Google Scholar 

  19. Ishii S, Suzuki S, Norden-Krichmar TM, Tenney A, Chain PS, Scholz MB, Nealson KH, Bretschger O (2013) A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nat Commun 4:1601

    Article  PubMed  Google Scholar 

  20. Hisano H, Tsujimura M, Yoshida H, Terachi T, Sato K (2016) Mitochondrial genome sequences from wild and cultivated barley (Hordeum vulgare). BMC Genomics 17(1):824

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen TC, Liu YC, Wang X, Wu CH, Huang CH, Chang CC (2017) Whole plastid transcriptomes reveal abundant RNA editing sites and differential editing status in Phalaenopsis aphrodite subsp. formosana. Bot Stud 58(1):38. https://doi.org/10.1186/s40529-017-0193-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang M, Cui L, Feng K, Deng P, Du X, Wan F, Weining S, Nie X (2015) Comparative analysis of Asteraceae chloroplast genomes: structural organization, RNA editing and evolution. Plant Mol Biol Rep 33(5):1526–1538

    Article  CAS  Google Scholar 

  23. Rodrigues NF, Christoff AP, da Fonseca GC, Kulcheski FR, Margis R (2017) Unveiling chloroplast RNA editing events using next generation small RNA sequencing data. Front Plant Sci 8:1686

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tukey J (1949) Comparing individual means in the analysis of variance. Biometrics 5(2):99–114

    Article  CAS  PubMed  Google Scholar 

  25. Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47:335–352

    Article  CAS  PubMed  Google Scholar 

  26. Rania MM, Areej AS, Thana KK, Hani MA, Ahmed MR (2019) Single nucleotide polymorphism analysis in plastomes of eight Catharanthus roseus cultivars. Biotechnol Biotechnol Equip 33(1):419–428. https://doi.org/10.1080/13102818.2019.1579671

    Article  CAS  Google Scholar 

  27. Schuster W, Hiesel R, Wissinger B, Brennicke A (1990) RNA editing in the cytochrome b locus of the higher plant Oenothera berteriana includes a U-to-C transition. Mol Cell Biol 10(5):2428–2431. https://doi.org/10.1128/mcb.10.5.2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hajrah NH, Obaid AY, Atef A, Ramadan AM, Arasappan D, Nelson CA, Edris S, Mutwakil MZ, Alhebshi A, Gadalla NO et al (2017) Transcriptomic analysis of salt stress responsive genes in Rhazya stricta. PLoS ONE 12(5):e0177589

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xiao H, Zhang Q, Qin X, Xu Y, Ni C, Huang J, Zhu L, Zhong F, Liu W, Yao G, Zhu Y, Hu J (2018) Rice PPS1 encodes a DYW motif-containing pentatricopeptide repeat protein required for five consecutive RNA-editing sites of nad3 in mitochondria. New Phytol 220:878–892

    Article  CAS  PubMed  Google Scholar 

  30. Ramadan AM (2020) Salinity effects on nad3 gene RNA editing of wild barley mitochondria. Mol Biol Rep 47(5):3857–3865. https://doi.org/10.1007/s11033-020-05475-7

    Article  CAS  PubMed  Google Scholar 

  31. Ramadan AM (2014) RNA editing in Calotropis procera mitochondrial nadh-dehydrogenase subunit 3 gene. Egypt J Genet Cytol 43:353–364

    Article  Google Scholar 

  32. He P, Xiao G, Liu H, Zhang L, Zhao L, Tang M, Huang S, An Y, Yu J (2018) Two pivotal RNA editing sites in the mitochondrial atp1mRNA are required for ATP synthase to produce sufficient ATP for cotton fiber cell elongation. New Phytol 218(1):167–182

    Article  CAS  PubMed  Google Scholar 

  33. Katsuhara M (1997) Apoptosis-like cell death in barley roots under salt stress. Plant Cell Physiol 38:1091–1093

    Article  CAS  Google Scholar 

  34. Katsuhara M, Shibasaka M (2000) Cell death and growth recovery of barley after transient salt stress. J Plant Res 113:239–243

    Article  CAS  Google Scholar 

  35. Lin J, Wang Y, Wang G (2005) Salt stress-induced programmed cell death via Ca2+-mediated mitochondrial permeability transition in tobacco protoplasts. Plant Growth Regul 45:243–250

    Article  CAS  Google Scholar 

  36. Li JY, Jiang AL, Zhang W (2007) Salt stress-induced programmed cell death in rice root tip cells. J Integr Biol 49:481–486

    Article  CAS  Google Scholar 

  37. Li JY, Jiang AL, Chen HY, Wang Y, Wang Y, Zhang W (2007) Lanthanum prevents salt stress-induced programmed cell death in rice root tip cells by controlling early induction events. J Integr Biol 49:1024–1031

    Article  CAS  Google Scholar 

  38. Huh GH, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JI, Narasimhan ML, Bressan RA, Hasegawa PM (2002) Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J 29:649–659

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. G- 91-130-1441. The authors, therefore, acknowledge and thank DSR's technical and financial support.

Funding

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. G- 91-130-1441.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Ramadan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

All the authors have consent for publication.

Research involving human and/or animal participants

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadan, A.M., Alnufaei, A.A., Khan, T.K. et al. The first report of RNA U to C or G editing in the mitochondrial NADH dehydrogenase subunit 5 (Nad5) transcript of wild barley. Mol Biol Rep 48, 6057–6064 (2021). https://doi.org/10.1007/s11033-021-06609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06609-1

Keywords

Navigation