Skip to main content

Advertisement

Log in

Association of interleukin-2, interleukin-21 and interleukin-23 with hyperlipidemia in pediatric type 1 diabetes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

In type 1 diabetes mellitus (T1DM), cytokines have a central role in orchestrating multicellular relations between β-cells and immune cells. This study aims to investigate the role of interleukin (IL)-21, IL-23, and IL-2, and their association with dyslipidemia in T1DM children.

Methods

The sample population consisted of 30 healthy controls and 70 children with T1DM, the latter of which were split into two groups according to the duration of their T1DM diagnosis: recent (≤ 1 year; n = 21) and older (> 1 year; n = 49) diagnoses.

Results

Fasting blood sugar and glycated hemoglobin levels in all diabetic children were significantly (P < 0.001) higher, whereas levels of plasma C-peptide were markedly (P < 0.001) lower in children with T1DM compared to healthy controls. In older T1DM diagnosis children, the levels of creatinine were noticeably (P < 0.05) increased relative to healthy controls. In all diabetic children, levels of total triglyceride, cholesterol, and low-density lipoprotein were increased significantly (P < 0.001) than those of healthy controls. Furthermore, the IL-21 and IL-23 mRNA expressions of all children with T1DM were elevated significantly (P < 0.001) relative to healthy controls, whereas IL-2 levels revealed a significant (P < 0.001) decrease in all diabetic children.

Conclusion

There was a synergistic interplay between IL-21 and IL-23 with an antagonistic action of IL-2 in T1DM patients, and all three interleukins were associated with dyslipidemia in diabetic children. Importantly, therapies targeting IL-21 and IL-23 are promising targets for preventive strategies against the development of T1DM and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Brawerman G, Thompson PJ (2020) Beta cell therapies for preventing type 1 diabetes: from bench to bedside. Biomolecules 10:1681

    Article  CAS  PubMed Central  Google Scholar 

  2. Chalakova T, Yotov Y, Tzotchev K, Galcheva S, Balev B, Bocheva Y, Usheva N, Iotova V (2021) Type 1 diabetes mellitus—Risk factor for cardiovascular disease morbidity and mortality. Curr Diabetes Rev 17:37–54

    Article  CAS  PubMed  Google Scholar 

  3. Uttra KM, Devrajani BR, Shah ZA, Devrajani T, Das T, Raza S (2011) Lipid profile of patients with diabetes mellitus (a multidisciplinary study). World Appl Sci J 12:1382–1384

    CAS  Google Scholar 

  4. d’Uscio LV, Baker TA, Mantilla CB, Smith L, Weiler D, Sieck GC, Katusic ZS (2001) Mechanism of endothelial dysfunction in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 21:1017–1022

    Article  PubMed  Google Scholar 

  5. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351(13):1296–1305

    Article  CAS  PubMed  Google Scholar 

  6. Myasoedova E, Crowson CS, Kremers HM, Roger VL, Fitz-Gibbon PD, Therneau TM, Gabriel SE (2011) Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann Rheum Dis 70:482–487

    Article  CAS  PubMed  Google Scholar 

  7. Mathis D, Vence L, Benoist C (2001) β-Cell death during progression to diabetes. Nature 414:792–798

    Article  CAS  PubMed  Google Scholar 

  8. Fatima N, Faisal SM, Zubair S, Ajmal M, Siddiqui SS, Moin S, Owais M (2016) Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type1diabetes: correlation with age and glycemic condition in diabetic human subjects. PLoS ONE 11(8):e0161548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Vogelzang A, McGuire HM, Yu D, Sprent J, Mackay CR, King C (2008) A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29:127–137

    Article  CAS  PubMed  Google Scholar 

  10. McGuire HM, Vogelzang A, Ma CS, Hughes WE, Silveira PA, Tangye SG, Christ D, Fulcher D, Falcone M, King C (2011) A subset of interleukin-21+ chemokine receptor CCR9+ T helper cells target accessory organs of the digestive system in autoimmunity. Immunity 34:602–615

    Article  CAS  PubMed  Google Scholar 

  11. Ferreira RC, Simons HZ, Thompson WS, Cutler AJ, Dopico XC, Smyth DJ, Mashar M, Schuilenburg H, Walker NM, Dunger DB, Wallace C, Todd JA, Wicker LS, Pekalski ML (2015) IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients. Diabetologia 58:781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu J, Liang Y, Zhao J, Meng H, Zhang X (2019) Interleukin-33 prevents the development of autoimmune diabetes in NOD mice. Int Immunopharmacol 70:9–15

    Article  CAS  PubMed  Google Scholar 

  13. Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, Kleinschek MA, Owyang A, Mattson J, Blumenschein W, Murphy E, Sathe M, Cua DJ, Kastelein RA, Rennick D (2006) IL-23 is essential for T cell–mediated colitis and promotes inflammation via IL-17 and IL6. J Clin Investig 116(5):1310–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mensah-Brown EP, Shahin A, Al-Shamsi M, Lukic ML (2006) New members of the interleukin-12 family of cytokines: IL-23andIL-27modulate autoimmune diabetes. Ann NY Acad Sci 1079:157–160

    Article  CAS  PubMed  Google Scholar 

  15. Laurence A, Tato CM, Davidson TS, Lukic ML (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26:371–381

    Article  CAS  PubMed  Google Scholar 

  16. Diaz-de-Durana Y, Lau J, Knee D, Filippi C, Londei M, McNamara P, Nasoff M, DiDonato M, Glynne R, Herman AE (2013) IL-2 immunotherapy reveals potential for innate beta cell regeneration in the non-obese diabetic mouse model of autoimmune diabetes. PLoS ONE 8:e78483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502

    Article  CAS  PubMed  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  19. Teles SAS, Fornés NS (2012) Relationship between anthropometric and biochemical profiles in children and adolescents with type 1 diabetes. Rev Paul Pediatr 30:65–71

    Article  Google Scholar 

  20. Basu S, Larsson A, Vessby J, Vessby B, Berne C (2005) Type 1 diabetes is associated with increased cyclooxygenase- and cytokine-mediated inflammation. Diabetes Care 28(6):1371–1375

    Article  CAS  PubMed  Google Scholar 

  21. Lachin JM, McGee P, Palmer JP, DCCT/EDIC Research Group (2014) Impact of C- peptide preservation on metabolic and clinical outcomes in the diabetes control and complications trial. Diabetes 63:739–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mannucci E, Dicembrini I, Lauria A, Pozzilli P (2013) Is glucose control important for prevention of cardiovascular disease in diabetes? Diabetes Care 36(2):S259–S263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Salem M, Moneir I, Adly AM, Esmat K (2011) Study of coronary artery calcification risk in Egyptian adolescents with type-1 diabetes. Acta Diabetol 48:41–53

    Article  CAS  PubMed  Google Scholar 

  24. Bielicki JK, Forte TM (1999) Evidence that lipid hydroperoxides inhibit plasma lecithin: cholesterol acyltransferase activity. J Lipid Res 40:948–954

    Article  CAS  PubMed  Google Scholar 

  25. Cockerill GW, Huehns TY, Weerasinghe A et al (2001) Elevation of plasma high-density lipoprotein concentration reduces interleukin-1-induced expression of E-selectin in an in vivo model of acute inflammation. Circulation 103:108–112

    Article  CAS  PubMed  Google Scholar 

  26. Kuvin JT, Patel AR, Sidhu M (2003) Relation between high-density lipoprotein cholesterol and peripheral vasomotor function. Am J Cardiol 92:275–279

    Article  CAS  PubMed  Google Scholar 

  27. Mourad A, Soraya M, Mohammed K, Ahmed-Bakir B, Aziz H (2007) Naim AK2007: relationship between interleukin-1β and lipids in type1 diabetic patients. Med Sci Monit 13:372–378

    Google Scholar 

  28. Hartvigsen K, Chou MY, Hansen LF, Shaw PX, Tsimikas S, Binder CJ, Witztum JL (2009) The role of innate immunity in atherogenesis. J Lipid Res 50:S388–S393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hakola L, Erlund I, Cuthbertson D, Miettinen ME, Autio R, Nucci AM, Härkönen T, Honkanen J, Vaarala O, Hyöty H, Knip M, Krischer JP, Niinistö S, Virtanen SM, Investigators TRIGR (2021) Serum fatty acids and risk of developing islet autoimmunity: a nested case-control study within the TRIGR birth cohort. Pediatr Diabetes. https://doi.org/10.1111/pedi.13189

    Article  PubMed  Google Scholar 

  30. Lahdenpera S, Syvanne M, Kahri J, Taskinen MR (1996) Regulation of low-density lipoprotein particle size distribution in NIDDM and coronary disease: importance of serum triglycerides. Diabetologia 39:453–461

    Article  CAS  PubMed  Google Scholar 

  31. Arai K, Yokoyama H, Okuguchi F et al (2008) Association between body mass index and core components of metabolic syndrome in 1486 patients with type 1 diabetes mellitus in Japan (JDDM 13). Endocr J 55(6):1025–1032

    Article  CAS  PubMed  Google Scholar 

  32. Vaid S, Hanks L, Griffin R, Ashraf AP (2016) Body mass index and glycemic control influence lipoproteins in children with type 1 diabetes. J Clin Lipidol 10(5):1240–1247

    Article  PubMed  PubMed Central  Google Scholar 

  33. Castro-Correia C, Santos-Silva R, Pinheiro M, Costa C, Fontoura M (2018) Metabolic risk factors in adolescent girls with type 1 diabetes. J Pediatr Endocrinol Metab 31(6):631–635

    Article  CAS  PubMed  Google Scholar 

  34. Fellinger P, Fuchs D, Wolf P et al (2019) Overweight and obesity in type 1 diabetes equal those of the general population. Wien Klin Wochenschr 131(3–4):55–60. https://doi.org/10.1007/s00508-018-1434-9

    Article  PubMed  PubMed Central  Google Scholar 

  35. Murphy D, McCulloch CE, Lin F, Banerjee T, Bragg-Gresham JL, Eberhardt MS, Morgenstern H, Pavkov ME, Saran R, Powe NR, Hsu CY (2016) Centers for disease control and prevention chronic kidney disease surveillance team. Trends in prevalence of chronic kidney disease in the United States. Ann Intern Med 165(7):473–481

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gonzalez Suarez ML, Thomas DB, Barisoni L, Fornoni A (2013) Diabetic nephropathy: is it time yet for routine kidney biopsy? World J Diabetes 4(6):245–255

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ruggenenti P, Remuzzi G (1998) Nephropathy of type 2 diabetes mellitus. J Am Soc Nephrol 9:2157–2159

    Article  CAS  PubMed  Google Scholar 

  38. Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A (2010) β-cell growth and regeneration: replication is only part of the story. Diabetes 59(10):2340–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF, Hwu P, Shaffer DJ, Akilesh S, Roopenian DC, Morse HC 3rd, Lipsky PE, Leonard WJ (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173:5361–5371

    Article  CAS  PubMed  Google Scholar 

  40. Kastirr I, Maglie S, Paroni M, Alfen JS, Nizzoli G, Sugliano E, Crosti MC, Moro M, Steckel B, Steinfelder S, Stölzel K, Romagnani C, Botti F, Caprioli F, Pagani M, Abrignani S, Geginat J (2014) IL-21 is a central memory T cell–associated cytokine that inhibits the generation of pathogenic Th1/17 effector cells. J Immunol 193:3322–3331

    Article  CAS  PubMed  Google Scholar 

  41. Van Belle TL, Nierkens S, Arens R, von Herrath MG (2012) Interleukin-21 receptor-mediated signals control autoreactive T cell infiltration in pancreatic islets. Immunity 36:1060–1072

    Article  PubMed  CAS  Google Scholar 

  42. Viisanen T, Ihantola EL, Näntö-Salonen K, Hyöty H, Nurminen N, Selvenius J, Juutilainen A, Moilanen L, Pihlajamäki J, Veijola R, Toppari J, Knip M, Ilonen J, Kinnunen T (2017) Circulating CXCR5+PD-1+ICOS+ follicular T helper cells are increased close to the diagnosis of type 1 diabetes in children with multiple autoantibodies. Diabetes 66:437–447

    Article  CAS  PubMed  Google Scholar 

  43. McGuire HM, Vogelzang A, Hill N, Flodström-Tullberg M, Sprent J, King C (2009) Loss of parity between IL-2 and IL-21 in the NOD Idd3 locus. Proc Natl Acad Sci USA 106:19438–19443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sutherland AP, Van Belle T, Wurster AL, Suto A, Michaud M, Zhang D, Grusby MJ, von Herrath M (2009) Interleukin-21 is required for the development of type 1 diabetes in NOD mice. Diabetes 58:1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duvallet E, Semerano L, Assier E, Falgarone G, Boissier MC (2011) Interleukin23: a key cytokine in inflammatory diseases. Ann Med 43:503–511

    Article  CAS  PubMed  Google Scholar 

  46. Villanueva MT (2017) Rheumatoid arthritis: IL-23 assists the transition from autoimmunity to inflammatory disease. Nat Rev Rheumatol 13(1):1. https://doi.org/10.1038/nrrheum.2016.197

    Article  PubMed  Google Scholar 

  47. Abu El-Nazar S, Ghoneim H, Abou-Shamaa L, Shalaby T, Merssal B, Abdelfattah Z, Elbigawy N (2020) Interleukin-23 and interleukin-25 activities following recombinant human interleukin-2 administration in an experimental model of streptozotocin-induced diabetes mellitus. GSJ 8(6):1901–1930

  48. Abbasi A, Corpeleijn E, Meijer E, Postmus D, Gansevoort RT, Gans RO, Struck J, Hillege HL, Stolk RP, Navis G, Bakker SJ (2012) Sex differences in the association between plasma copeptin and incident type 2 diabetes: the prevention of renal and vascular endstage disease (PREVEND) study. Diabetologia 55:1963–1970

    Article  CAS  PubMed  Google Scholar 

  49. Mus AM, Cornelissen F, Asmawidjaja PS, van Hamburg JP, Boon L, Hendriks RW, Lubberts E (2010) Interleukin-23 promotes Th17 differentiation by inhibiting T bet and FoxP3 and is required for elevation of interleukin-22, but not interleukin-21, in autoimmune experimental arthritis. Arthritis Rheum 62:1043–1050

    Article  CAS  PubMed  Google Scholar 

  50. Mensah-Brown EP, Shahin A, Al-Shamisi M, Wei X, Lukic ML (2006) IL23 leads to diabetes induction after subdiabetogenic treatment with multiple low doses of streptozotocin. Eur J Immunol 36:216–223

    Article  CAS  PubMed  Google Scholar 

  51. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Iwakura Y, Ishigame H, Saijo S, Nakae S (2011) Functional specialization of interleukin-17 Family Members. Immunity 34:149–162

    Article  CAS  PubMed  Google Scholar 

  53. Hulme MA, Wasserfall CH, Atkinson MA, Brusko TM (2012) Central role for interleukin-2 in type diabetes. Diabetes 61:14–22

    Article  CAS  PubMed  Google Scholar 

  54. Dogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurgoze MK (2006) Serum IL-1β, IL-2, and IL-6 in insulin-dependent diabetic children. Mediat Inflamm 1:59206

    Google Scholar 

  55. Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, Porcelli S, Maclaren N (2002) Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109:131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR (2007) IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974

    Article  CAS  PubMed  Google Scholar 

  57. Iwakura Y, Ishigame H (2006) The IL-23/IL 17axis in inflammation. J Clin Invest 116:1218–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None (no researches grant supported this work).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. RGK, HA, AIY and MIZ analyzed the data and interpreted the data and prepared the manuscript for publication. RGK, AA and AE reviewed the draft of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adel Abdel-Moneim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

The research procedure was approved by the Hospital ethics committee in compliance with the Helsinki announcement and the recommendations for good clinical practice (BSU/FS/2016/12).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, R.G., Abdel-Moneim, A., Yousef, A.I. et al. Association of interleukin-2, interleukin-21 and interleukin-23 with hyperlipidemia in pediatric type 1 diabetes. Mol Biol Rep 48, 5421–5433 (2021). https://doi.org/10.1007/s11033-021-06545-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06545-0

Keywords

Navigation