Skip to main content

Advertisement

Log in

Unfolding antifungals: as a new foe to pancreatic ductal adenocarcinoma—a mini-review

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Increased deaths caused due to pancreatic cancer (PC) is drawing much attention towards an immediate need for therapeutics that could possibly control this disease and increase the patients’ survival rate. Despite the long list of well-established chemotherapeutic drugs in several cancers none have proved to be efficient against PC, and the increasing chemoresistance to the gold standard drug gemcitabine calls a need to search for solutions in other categories of drug. To the rescue, antifungals have shown themselves to be effective against PC and can increase gemcitabine sensitivity against PC. In this mini-review, we reported how antifungals have targeted PC and helped to reduce its lethality. Additionally, it is emphasized that how the antifungals show new mechanisms that could be triggered by using either monotherapy or combination therapy of these antifungals with chemotherapeutic drugs in PC. Moreover it shows an approach of using other drugs with possible same or other mechanism to know their effect on PC.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in the published article.

Abbreviations

SFN:

14-3-3 Protein sigma

5FU:

5-Fluorouracil

S100A11:

Calgizzarin

CSCs:

Cancer stem cells

CIC:

Ciclopirox olamine

KRT:

Cytokeratin type II CK8

FDA:

Food and drug administration

FOXM1:

Forkhead boxM1

GSTP:

Glutathione S transferase

GF:

Griseofulvin

GNB2L:

Guanine nucleotide-binding protein β subunit like protein

HSPA9B:

Heat shock protein 70

HSPCA:

Heat shock protein 90 alpha

HDAC:

Histone deacetylases

ITZ:

Itraconazole

MMP 1:

Matrix metalloproteinases 1

MMP 2:

Matrix metalloproteinases 2

NCBI:

National center for biotechnology information

NICD:

Notch intracellular domain

NPM:

Nucleophosmin

PC:

Pancreatic cancer

PDAC:

Pancreatic ductal adenocarcinoma

PTCH:

Patched

PRDX1:

Peroxiredoxin 1

PO:

Piroctone olamine

PDCD5:

Programmed cell death protein 5

ROS:

Reactive oxygen species

SMO:

Smoothened

OC18:

Stathmin

SOD1:

Superoxide dismutase

TXN:

Thioredoxin

TCTP:

Translationally controlled tumor protein

TSA:

Trichostatin A

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

SAHA:

Vorinostat

References

  1. Garcia M, Jemal A, Ward E, Center M, Hao Y, Siegel R et al (2007) Global cancer facts and figures. American Cancer Society, Atlanta

    Google Scholar 

  2. Wiest NE, Moktan VP, Oman SP, Chirilă RM (2020) Screening for pancreatic cancer: a review for general clinicians. Rom J Intern Med 58(3):119–128. https://doi.org/10.2478/rjim-2020-0009

    Article  PubMed  Google Scholar 

  3. Gašić U, Ćirić I, Pejčić T, Radenković D, Djordjević V, Radulović S et al (2020) Polyphenols as possible agents for pancreatic diseases. Antioxidants (Basel) 9(6):547. https://doi.org/10.3390/antiox9060547

    Article  CAS  Google Scholar 

  4. Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H (2019) Chemoresistance in pancreatic cancer. Int J Mol Sci 20(18):4504

    Article  CAS  PubMed Central  Google Scholar 

  5. Sarantis P, Koustas E, Papadimitropoulou A, Papavassiliou AG, Karamouzis MV (2020) Pancreatic ductal adenocarcinoma: treatment hurdles, tumor microenvironment and immunotherapy. World J Gastrointest Oncol 12(2):173–181. https://doi.org/10.4251/wjgo.v12.i2.173

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kokkinos J, Ignacio RMC, Sharbeen G, Boyer C, Gonzales-Aloy E, Goldstein D et al (2020) Targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs. Biomaterials 240:119742. https://doi.org/10.1016/j.biomaterials.2019.119742

    Article  CAS  PubMed  Google Scholar 

  7. Orth M, Metzger P, Gerum S, Mayerle J, Schneider G, Belka C et al (2019) Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 14(1):141. https://doi.org/10.1186/s13014-019-1345-6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang M, Yang X, Wang D, Yu C, Sun S (2019) Antifungal activity of immunosuppressants used alone or in combination with fluconazole. J Appl Microbiol 126(5):1304–1317. https://doi.org/10.1111/jam.14126

    Article  CAS  PubMed  Google Scholar 

  9. Wiederhold NP (2018) The antifungal arsenal: alternative drugs and future targets. Int J Antimicrob Agents 51(3):333–339. https://doi.org/10.1016/j.ijantimicag.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  10. Van Daele R, Spriet I, Wauters J, Maertens J, Mercier T, Van Hecke S et al (2019) Antifungal drugs: what brings the future? Med Mycol 57(Supplement_3):S328–S343. https://doi.org/10.1093/mmy/myz012

    Article  CAS  PubMed  Google Scholar 

  11. Pantziarka P, Sukhatme V, Bouche G, Meheus L, Sukhatme VP (2015) Repurposing drugs in oncology (ReDO)-itraconazole as an anti-cancer agent. Ecancermedicalscience 9:521. https://doi.org/10.3332/ecancer.2015.521

    Article  PubMed  PubMed Central  Google Scholar 

  12. Joharatnam-Hogan N, Alexandre L, Yarmolinsky J, Lake B, Capps N, Martin RM et al (2021) Statins as potential chemoprevention or therapeutic agents in cancer: a model for evaluating repurposed drugs. Curr Oncol Rep 23(3):29. https://doi.org/10.1007/s11912-021-01023-z

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martinez-Escobar A, Luna-Callejas B, Ramón-Gallegos E (2020) CRISPR-dCas9-based artificial transcription factors to improve efficacy of cancer treatment with drug repurposing: proposal for future research. Front Oncol 10:604948. https://doi.org/10.3389/fonc.2020.604948

    Article  PubMed  Google Scholar 

  14. Sleire L, Førde HE, Netland IA, Leiss L, Skeie BS, Enger P (2017) Drug repurposing in cancer. Pharmacol Res 124:74–91. https://doi.org/10.1016/j.phrs.2017.07.013

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Zhang Z, Huang Y, Qin S, Zhou L, Weng N et al (2021) Repurposing antitussive benproperine phosphate against pancreatic cancer depends on autophagy arrest. Mol Oncol 15(2):725–738. https://doi.org/10.1002/1878-0261.12854

    Article  PubMed  Google Scholar 

  16. Tsubamoto H, Ueda T, Inoue K, Sakata K, Shibahara H, Sonoda T (2017) Repurposing itraconazole as an anticancer agent. Oncol Lett 14(2):1240–1246. https://doi.org/10.3892/ol.2017.6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guilford FT, Yu S (2019) Antiparasitic and antifungal medications for targeting cancer cells literature review and case studies. Altern Ther Health Med 25(4):26–31

    PubMed  Google Scholar 

  18. Kaushik A, Kest H (2018) The role of antifungals in pediatric critical care invasive fungal infections. Crit Care Res Pract 2018:8469585. https://doi.org/10.1155/2018/8469585

    Article  PubMed  PubMed Central  Google Scholar 

  19. Johnson MD, Perfect JR (2010) Use of antifungal combination therapy: agents, order, and timing. Curr Fungal Infect Rep 4(2):87–95. https://doi.org/10.1007/s12281-010-0018-6

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ali Malayeri F, Rezaei A, Raiesi O (2018) Antifungal agents: polyene, azole, antimetabolite, other and future agents. J Basic Res Med Sci 5(2):48–55

    Article  Google Scholar 

  21. Wall G, Lopez-Ribot JL (2020) Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics (Basel) 9(8):445. https://doi.org/10.3390/antibiotics9080445

    Article  CAS  Google Scholar 

  22. Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46(2):171–179. https://doi.org/10.1093/jac/46.2.171

    Article  CAS  PubMed  Google Scholar 

  23. Rodrigues ME, Silva S, Azeredo J, Henriques M (2016) Novel strategies to fight Candida species infection. Crit Rev Microbiol 42(4):594–606. https://doi.org/10.3109/1040841X.2014.974500

    Article  CAS  PubMed  Google Scholar 

  24. Jenke R, Reßing N, Hansen FK, Aigner A, Büch T (2021) Anticancer therapy with HDAC inhibitors: mechanism-based combination strategies and future perspectives. Cancers (Basel) 13(4):634. https://doi.org/10.3390/cancers13040634

    Article  Google Scholar 

  25. Lourenço de Freitas N, Deberaldini MG, Gomes D, Pavan AR, Sousa Â, Dos Santos JL et al (2020) Histone deacetylase inhibitors as therapeutic interventions on cervical cancer induced by human papillomavirus. Front Cell Dev Biol 8:592868. https://doi.org/10.3389/fcell.2020.592868

    Article  PubMed  Google Scholar 

  26. Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K (1976) A new antifungal antibiotic, trichostatin. J Antibiot (Tokyo) 29(1):1–6. https://doi.org/10.7164/antibiotics.29.1

    Article  CAS  Google Scholar 

  27. Chang C (2015) Chapter 17—Managing autoimmune disorders through personalized epigenetic approaches. In: Tollefsbol TO (ed) Personalized epigenetics. Academic Press, Boston, pp 475–505

    Chapter  Google Scholar 

  28. Lamoth F, Juvvadi PR, Steinbach WJ (2015) Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis. Front Microbiol 6:96. https://doi.org/10.3389/fmicb.2015.00096

    Article  PubMed  PubMed Central  Google Scholar 

  29. Donadelli M, Costanzo C, Faggioli L, Scupoli MT, Moore PS, Bassi C et al (2003) Trichostatin A, an inhibitor of histone deacetylases, strongly suppresses growth of pancreatic adenocarcinoma cells. Mol Carcinog 38(2):59–69. https://doi.org/10.1002/mc.10145

    Article  CAS  PubMed  Google Scholar 

  30. Cecconi D, Scarpa A, Donadelli M, Palmieri M, Hamdan M, Astner H et al (2003) Proteomic profiling of pancreatic ductal carcinoma cell lines treated with trichostatin-A. Electrophoresis 24(11):1871–1878. https://doi.org/10.1002/elps.200305430

    Article  CAS  PubMed  Google Scholar 

  31. Moore PS, Barbi S, Donadelli M, Costanzo C, Bassi C, Palmieri M et al (2004) Gene expression profiling after treatment with the histone deacetylase inhibitor trichostatin A reveals altered expression of both pro- and anti-apoptotic genes in pancreatic adenocarcinoma cells. Biochim Biophys Acta 1693(3):167–176. https://doi.org/10.1016/j.bbamcr.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  32. Cecconi D, Donadelli M, Scarpa A, Milli A, Palmieri M, Hamdan M et al (2005) Proteomic analysis of pancreatic ductal carcinoma cells after combined treatment with gemcitabine and trichostatin A. J Proteome Res 4(6):1909–1916. https://doi.org/10.1021/pr050154j

    Article  CAS  PubMed  Google Scholar 

  33. Donadelli M, Costanzo C, Beghelli S, Scupoli MT, Dandrea M, Bonora A et al (2007) Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochim Biophys Acta 1773(7):1095–1106. https://doi.org/10.1016/j.bbamcr.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  34. Chen Z, Yang Y, Liu B, Wang B, Sun M, Zhang L et al (2015) Promotion of metastasis-associated gene expression in survived PANC-1 cells following trichostatin A treatment. Anticancer Agents Med Chem 15(10):1317–1325. https://doi.org/10.2174/1871520615666150520093040

    Article  CAS  PubMed  Google Scholar 

  35. Feng W, Cai D, Zhang B, Lou G, Zou X (2015) Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed Pharmacother 74:257–264. https://doi.org/10.1016/j.biopha.2015.08.017

    Article  CAS  PubMed  Google Scholar 

  36. Gilardini Montani MS, Granato M, Santoni C, Del Porto P, Merendino N, D’Orazi G et al (2017) Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells. Cell Oncol (Dordrecht) 40(2):167–180. https://doi.org/10.1007/s13402-017-0314-z

    Article  CAS  Google Scholar 

  37. Khursheed M, Kolla JN, Kotapalli V, Gupta N, Gowrishankar S, Uppin SG et al (2013) ARID1B, a member of the human SWI/SNF chromatin remodeling complex, exhibits tumour-suppressor activities in pancreatic cancer cell lines. Br J Cancer 108(10):2056–2062. https://doi.org/10.1038/bjc.2013.200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dalla Pozza E, Manfredi M, Brandi J, Buzzi A, Conte E, Pacchiana R et al (2018) Trichostatin A alters cytoskeleton and energy metabolism of pancreatic adenocarcinoma cells: an in depth proteomic study. J Cell Biochem 119(3):2696–2707. https://doi.org/10.1002/jcb.26436

    Article  CAS  PubMed  Google Scholar 

  39. Tiffon C (2018) Histone deacetylase inhibition restores expression of hypoxia-inducible protein NDRG1 in pancreatic cancer. Pancreas 47(2):200–207. https://doi.org/10.1097/MPA.0000000000000982

    Article  CAS  PubMed  Google Scholar 

  40. Cai MH, Xu XG, Yan SL, Sun Z, Ying Y, Wang BK et al (2018) Depletion of HDAC1, 7 and 8 by histone deacetylase inhibition confers elimination of pancreatic cancer stem cells in combination with gemcitabine. Sci Rep 8(1):1621. https://doi.org/10.1038/s41598-018-20004-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen L, Jin T, Zhu K, Piao Y, Quan T, Quan C et al (2017) PI3K/mTOR dual inhibitor BEZ235 and histone deacetylase inhibitor trichostatin A synergistically exert anti-tumor activity in breast cancer. Oncotarget 8(7):11937–11949. https://doi.org/10.18632/oncotarget.14442

    Article  PubMed  PubMed Central  Google Scholar 

  42. Song X, Wu JQ, Yu XF, Yang XS, Yang Y (2018) Trichostatin A inhibits proliferation of triple negative breast cancer cells by inducing cell cycle arrest and apoptosis. Neoplasma 65(6):898–906. https://doi.org/10.4149/neo_2018_181212N476

    Article  CAS  PubMed  Google Scholar 

  43. Li L, Fan B, Zhang LH, Xing XF, Cheng XJ, Wang XH et al (2016) Trichostatin A potentiates TRAIL-induced antitumor effects via inhibition of ERK/FOXM1 pathway in gastric cancer. Tumour Biol 37(8):10269–10278. https://doi.org/10.1007/s13277-016-4816-5

    Article  CAS  PubMed  Google Scholar 

  44. Zhang X, Lu H, Hong W, Liu L, Wang S, Zhou M et al (2018) Tyrphostin B42 attenuates trichostatin A-mediated resistance in pancreatic cancer cells by antagonizing IL-6/JAK2/STAT3 signaling. Oncol Rep 39(4):1892–1900. https://doi.org/10.3892/or.2018.6241

    Article  CAS  PubMed  Google Scholar 

  45. Azbazdar Y, Karabicici M, Erdal E, Ozhan G (2021) Regulation of Wnt signaling pathways at the plasma membrane and their misregulation in cancer. Front Cell Dev Biol 9:631623. https://doi.org/10.3389/fcell.2021.631623

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li Q, Sun M, Wang M, Feng M, Yang F, Li L et al (2021) Dysregulation of Wnt/β-catenin signaling by protein kinases in hepatocellular carcinoma and its therapeutic application. Cancer Sci. https://doi.org/10.1111/cas.14861

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wall I, Schmidt-Wolf IG (2014) Effect of Wnt inhibitors in pancreatic cancer. Anticancer Res 34(10):5375–5380

    CAS  PubMed  Google Scholar 

  48. Mihailidou C, Papakotoulas P, Papavassiliou AG, Karamouzis MV (2018) Superior efficacy of the antifungal agent ciclopirox olamine over gemcitabine in pancreatic cancer models. Oncotarget 9(12):10360–10374. https://doi.org/10.18632/oncotarget.23164

    Article  PubMed  Google Scholar 

  49. Wang B, Zou Q, Sun M, Chen J, Wang T, Bai Y et al (2014) Reversion of trichostatin A resistance via inhibition of the Wnt signaling pathway in human pancreatic cancer cells. Oncol Rep 32(5):2015–2022. https://doi.org/10.3892/or.2014.3476

    Article  CAS  PubMed  Google Scholar 

  50. Shen T, Zhou H, Shang C, Luo Y, Wu Y, Huang S (2018) Ciclopirox activates ATR-Chk1 signaling pathway leading to Cdc25A protein degradation. Genes Cancer 9(1–2):39–52. https://doi.org/10.18632/genesandcancer.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shen T, Shang C, Zhou H, Luo Y, Barzegar M, Odaka Y et al (2017) Ciclopirox inhibits cancer cell proliferation by suppression of Cdc25A. Genes Cancer 8(3–4):505–516. https://doi.org/10.18632/genesandcancer.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou H, Shang C, Wang M, Shen T, Kong L, Yu C et al (2016) Ciclopirox olamine inhibits mTORC1 signaling by activation of AMPK. Biochem Pharmacol 116:39–50. https://doi.org/10.1016/j.bcp.2016.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhou J, Zhang L, Wang M, Zhou L, Feng X, Yu L et al (2019) CPX targeting DJ-1 triggers ROS-induced cell death and protective autophagy in colorectal cancer. Theranostics 9(19):5577–5594. https://doi.org/10.7150/thno.34663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Braun JA, Herrmann AL, Blase JI, Frensemeier K, Bulkescher J, Scheffner M et al (2020) Effects of the antifungal agent ciclopirox in HPV-positive cancer cells: repression of viral E6/E7 oncogene expression and induction of senescence and apoptosis. Int J Cancer 146(2):461–474. https://doi.org/10.1002/ijc.32709

    Article  CAS  PubMed  Google Scholar 

  55. Huang YM, Cheng CH, Pan SL, Yang PM, Lin DY, Lee KH (2019) Gene expression signature-based approach identifies antifungal drug ciclopirox as a novel inhibitor of HMGA2 in colorectal cancer. Biomolecules 9(11):688. https://doi.org/10.3390/biom9110688

    Article  CAS  PubMed Central  Google Scholar 

  56. Koller CM, Kim Y, Schmidt-Wolf IG (2013) Targeting renal cancer with a combination of WNT inhibitors and a bi-functional peptide. Anticancer Res 33(6):2435–2440

    CAS  PubMed  Google Scholar 

  57. Von Schulz-Hausmann SA, Schmeel LC, Schmeel FC, Schmidt-Wolf IG (2014) Targeting the Wnt/beta-catenin pathway in renal cell carcinoma. Anticancer Res 34(8):4101–4108

    Google Scholar 

  58. Weir SJ, Patton L, Castle K, Rajewski L, Kasper J, Schimmer AD (2011) The repositioning of the anti-fungal agent ciclopirox olamine as a novel therapeutic agent for the treatment of haematologic malignancy. J Clin Pharm Ther 36(2):128–134. https://doi.org/10.1111/j.1365-2710.2010.01172.x

    Article  CAS  PubMed  Google Scholar 

  59. Iriana S, Asha K, Repak M, Sharma-Walia N (2021) Hedgehog signaling: implications in cancers and viral infections. Int J Mol Sci 22(3):1042. https://doi.org/10.3390/ijms22031042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ding J, Li HY, Zhang L, Zhou Y, Wu J (2021) Hedgehog signaling a critical pathway governing the development and progression of hepatocellular carcinoma. Cells 10(1):123. https://doi.org/10.3390/cells10010123

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tsubamoto H, Sonoda T, Ikuta S, Tani S, Inoue K, Yamanaka N (2015) Combination chemotherapy with itraconazole for treating metastatic pancreatic cancer in the second-line or additional setting. Anticancer Res 35(7):4191–4196

    CAS  PubMed  Google Scholar 

  62. Lockhart NR, Waddell JA, Schrock NE (2016) Itraconazole therapy in a pancreatic adenocarcinoma patient: a case report. J Oncol Pharm Pract 22(3):528–532. https://doi.org/10.1177/1078155215572931

    Article  CAS  PubMed  Google Scholar 

  63. Jiang F, Xing HS, Chen WY, Du J, Ruan YL, Lin AY et al (2019) Itraconazole inhibits proliferation of pancreatic cancer cells through activation of Bak-1. J Cell Biochem 120(3):4333–4341. https://doi.org/10.1002/jcb.27719

    Article  CAS  PubMed  Google Scholar 

  64. Chen K, Cheng L, Qian W, Jiang Z, Sun L, Zhao Y et al (2018) Itraconazole inhibits invasion and migration of pancreatic cancer cells by suppressing TGF-β/SMAD2/3 signaling. Oncol Rep 39(4):1573–1582. https://doi.org/10.3892/or.2018.6281

    Article  CAS  PubMed  Google Scholar 

  65. Mamtani R, Yang YX, Scott FI, Lewis JD, Boursi B (2016) Association of itraconazole, a hedgehog inhibitor, and bladder cancer. J Urol 196(2):343–348. https://doi.org/10.1016/j.juro.2016.01.089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wei X, Liu W, Wang JQ, Tang Z (2020) “Hedgehog pathway”: a potential target of itraconazole in the treatment of cancer. J Cancer Res Clin Oncol 146(2):297–304. https://doi.org/10.1007/s00432-019-03117-5

    Article  CAS  PubMed  Google Scholar 

  67. Hu Q, Hou YC, Huang J, Fang JY, Xiong H (2017) Itraconazole induces apoptosis and cell cycle arrest via inhibiting hedgehog signaling in gastric cancer cells. J Exp Clin Cancer Res 36(1):50. https://doi.org/10.1186/s13046-017-0526-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsubamoto H, Inoue K, Sakata K, Ueda T, Takeyama R, Shibahara H et al (2017) Itraconazole Inhibits AKT/mTOR signaling and proliferation in endometrial cancer cells. Anticancer Res 37(2):515–519. https://doi.org/10.21873/anticanres.11343

    Article  CAS  PubMed  Google Scholar 

  69. Choi CH, Ryu JY, Cho YJ, Jeon HK, Choi JJ, Ylaya K et al (2017) The anti-cancer effects of itraconazole in epithelial ovarian cancer. Sci Rep 7(1):6552. https://doi.org/10.1038/s41598-017-06510-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Buczacki SJA, Popova S, Biggs E, Koukorava C, Buzzelli J, Vermeulen L et al (2018) Itraconazole targets cell cycle heterogeneity in colorectal cancer. J Exp Med 215(7):1891–1912. https://doi.org/10.1084/jem.20171385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen MB, Liu YY, Xing ZY, Zhang ZQ, Jiang Q, Lu PH et al (2018) Itraconazole-induced inhibition on human esophageal cancer cell growth requires AMPK activation. Mol Cancer Ther 17(6):1229–1239. https://doi.org/10.1158/1535-7163.MCT-17-1094

    Article  CAS  PubMed  Google Scholar 

  72. Guzmán EA, Maers K, Roberts J, Kemami-Wangun HV, Harmody D, Wright AE (2015) The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs 33(1):86–94. https://doi.org/10.1007/s10637-014-0185-3

    Article  CAS  PubMed  Google Scholar 

  73. Schmeel LC, Schmeel FC, Kim Y, Blaum-Feder S, Schmidt-Wolf IGH (2017) Griseofulvin efficiently induces apoptosis in In vitro treatment of lymphoma and multiple myeloma. Anticancer Res 37(5):2289–2295. https://doi.org/10.21873/anticanres.11566`

    Article  CAS  PubMed  Google Scholar 

  74. Bramann EL, Willenberg HS, Hildebrandt B, Müller-Mattheis V, Schott M, Scherbaum WA et al (2013) Griseofulvin inhibits the growth of adrenocortical cancer cells in vitro. Horm Metab Res 45(4):297–300. https://doi.org/10.1055/s-0032-1327642

    Article  CAS  PubMed  Google Scholar 

  75. Kopantsev EP, Kostina MB, Grankina EV, Kopantseva MR, Egorov VI, Sverdlov ED (2016) Expression of therapeutic gene FCU1 sensitizes pancreatic cancer cells to 5-fluorocytosine and enhances the cytotoxic effect of 5-fluorouracil. Bull Exp Biol Med 161(6):808–810. https://doi.org/10.1007/s10517-016-3517-9

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant form funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SG: Conceptualization, investigation, data curation, writing, original draft preparation. AK: Data curation and figure preparation. SG and KKT: Writing review, editing and supervision.

Corresponding author

Correspondence to Kiran Kumar Tejavath.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Kumar, A. & Tejavath, K.K. Unfolding antifungals: as a new foe to pancreatic ductal adenocarcinoma—a mini-review. Mol Biol Rep 48, 2945–2956 (2021). https://doi.org/10.1007/s11033-021-06318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06318-9

Keywords

Navigation