Skip to main content
Log in

Effects of miR-125b-5p on Preadipocyte Proliferation and Differentiation in Chicken

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Our previous studies have shown that miR-125b-5p was highly expressed and significantly upregulated during abdominal fat deposition in chickens. However, the role of miR-125b in the regulation of adipogenesis is not clear in chickens. Therefore, we evaluated the effects of miR-125b-5p on preadipocyte proliferation and differentiation and the interaction between miR-125b-5p and the acyl-CoA synthetase bubblegum family member 2 (ACSBG2) gene in adipogenesis in chicken abdominal adipose tissue. Here, transfection tests of miR-125b-5p mimic/inhibitor were performed in preadipocytes, and the effects of miR-125b-5p on preadipocytes proliferation and differentiation were analyzed. The target site of miR-125b-5p in the 3′UTR (untranslated region) of ACSBG2 were verified by a luciferase reporter assay. Our results showed that miR-125b-5p overexpression inhibited proliferation and reduced the number of cells in S phase and G2/M phase in preadipocytes; conversely, miR-125b-5p inhibition promoted the proliferation and increased the number of cells in S phase and G2/M phase. In adipocytes after induction, miR-125b-5p overexpression led to a notable increase in the accumulation of lipid droplets as well as in the concentration of triglycerides, while miR-125b-5p inhibition had the opposite effect. Furthermore, miR-125b-5p could directly bind to the 3'UTR of ACSBG2, and its overexpression could significantly repress the mRNA and protein expression of ACSBG2. These results indicate that miR-125b-5p can inhibit preadipocyte proliferation and can promote preadipocyte differentiation to affect adipogenesis in chicken abdominal adipose tissues, at least partially by downregulating ACSBG2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data and material used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bai S, Wang G, Zhang W, Zhang S, Rice BB, Cline MA, Gilbert ER (2015) Broiler chicken adipose tissue dynamics during the first two weeks post-hatch. Comp Biochem Physiol A Mol Integr Physiol 189:115–123

    Article  CAS  PubMed  Google Scholar 

  2. Abdalla BA, Chen J, Nie Q, Zhang X (2018) Genomic insights into the multiple factors controlling abdominal fat deposition in a chicken model. Front Genet 9:262

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ahn J, Lee H, Jung CH, Jeon TI, Ha TY (2013) MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol Med 5:1602–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen L, Hou J, Ye L, Chen Y, Cui J, Tian W, Li C, Liu L (2014) MicroRNA-143 regulates Adipogenesis by modulating the MAP2K5–ERK5 signaling. Sci Rep 4:3819

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH, Zhu BY, Gao ZP, Zhang L, Liao DF (2011) MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol 38:239–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeong BC, Kang IH, Koh JT (2014) MicroRNA-302a inhibits adipogenesis by suppressing peroxisome proliferator-activated receptor γ expression. FEBS Lett 588:3427–3434

    Article  CAS  PubMed  Google Scholar 

  7. Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ, Scheideler M (2009) microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem Biophys Res Commun 390:247–251

    Article  CAS  PubMed  Google Scholar 

  8. Peng Y, Li H, Li X, Yu S, Xiang H, Peng J, Jiang S (2016) MicroRNA-215 impairs adipocyte differentiation and co-represses FNDC3B and CTNNBIP1. Int J Biochem Cell Biol 79:104–112

    Article  CAS  PubMed  Google Scholar 

  9. Cortinas L, Barroeta A, Villaverde C, Galobart J, Guardiola F, Baucells M (2005) Influence of the dietary polyunsaturation level on chicken meat quality: lipid oxidation. Poult Sci 84:48–55

    Article  CAS  PubMed  Google Scholar 

  10. Wang L, Cheng B, Li H, Wang Y (2019) Proteomics analysis of preadipocytes between fat and lean broilers. Br Poult Sci 60:522–529

    Article  CAS  PubMed  Google Scholar 

  11. Huang H, Liu R, Zhao G, Li Q, Zheng M, Zhang J, Li S, Liang Z, Wen J (2015) Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens. Sci Rep 5:16132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao J, Wang Y, Wang W, Wang N, Li H (2011) Solexa sequencing analysis of chicken pre-adipocyte microRNAs. Biosci Biotechnol Biochem 75:54–61

    Article  CAS  PubMed  Google Scholar 

  13. Wang W, Du ZQ, Cheng B, Wang Y, Yao J, Li Y, Cao Z, Luan P, Wang N, Li H (2015) Expression profiling of preadipocyte microRNAs by deep sequencing on chicken lines divergently selected for abdominal fatness. PLoS One 10:e0117843

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ma X, Sun J, Zhu S, Zhenwei D, Li D, Li W, Li Z, Tian Y, Kang X, Sun G (2020) MiRNAs and mRNAs analysis during abdominal preadipocyte differentiation in chickens. Animals 10:468

    Article  Google Scholar 

  15. Sun YM, Lin KY, Chen YQ (2013) Diverse functions of miR-125 family in different cell contexts. J Hematol Oncol 6:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guan Y, Yao H, Zheng Z, Qiu G, Sun K (2011) MiR-125b targets BCL3 and suppresses ovarian cancer proliferation. Int J Cancer 128:2274–2283

    Article  CAS  PubMed  Google Scholar 

  17. Wang YD, Cai N, Wu X, Cao H, Xie L, Zheng P (2013) OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis 4:e760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng X, Xi QY, Wei S, Wu D, Ye RS, Chen T, Qi QE, Jiang QY, Wang SB, Wang LN (2016) Critical role of miR-125b in lipogenesis by targeting stearoyl-CoA desaturase-1 (SCD-1). J Anim Sci 94:65–76

    Article  CAS  PubMed  Google Scholar 

  19. Rockstroh D, Löffler D, Kiess W, Landgraf K, Körner A (2016) Regulation of human adipogenesis by miR125b-5p. Adipocyte 5:283–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Giroud M, Pisani DF, Karbiener M, Barquissau V, Ghandour RA, Tews D, Fischer-Posovszky P, Chambard JC, Knippschild U, Niemi T (2016) miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function. Mol Metab 5:615–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ouyang D, Ye Y, Guo D, Yu X, Chen J, Qi J, Tan X, Zhang Y, Ma Y, Li Y (2015) MicroRNA-125b-5p inhibits proliferation and promotes adipogenic differentiation in 3T3-L1 preadipocytes. Acta Biochim Biophys Sin 47:355–361

    Article  CAS  PubMed  Google Scholar 

  22. He J, Xu Q, Jing Y, Agani F, Qian X, Carpenter R, Li Q, Wang XR, Peiper SS, Lu Z (2012) Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation. EMBO Rep 13:1116–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ren C, Xie R, Yao Y, Yu M, Chang F, Xing L, Zhang Y, Liu Y, Wang S, Farooque M (2019) MiR-125b suppression inhibits apoptosis and negatively regulates sema4d in avian leukosis virus-transformed cells. Viruses 11:728

    Article  CAS  PubMed Central  Google Scholar 

  24. Chen Y, Zhao Y, Jin W, Li Y, Zhang Y, Ma X, Sun G, Han R, Tian Y, Li H (2019) MicroRNAs and their regulatory networks in Chinese Gushi chicken abdominal adipose tissue during postnatal late development. BMC Genomics 20:778

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moriya-Sato A, Hida A, Inagawa-Ogashiwa M, Wada MR, Sugiyama K, Shimizu J, Yabuki T, Seyama Y, Hashimoto N (2000) Novel acyl-CoA synthetase in adrenoleukodystrophy target tissues. Biochem Biophys Res Commun 279:62–68

    Article  CAS  PubMed  Google Scholar 

  26. Steinberg SJ, Morgenthaler J, Heinzer AK, Smith KD, Watkins PA (2000) Very long-chain acyl-CoA synthetases. human “bubblegum” represents a new family of proteins capable of activating very long-chain fatty acids. J Biol Chem 275:35162–35169

    Article  CAS  PubMed  Google Scholar 

  27. Chen K, He H, Xie Y, Zhao L, Zhao S, Wan X, Yang W, Mo Z (2015) miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis. Sci Rep 5:11909

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fajas L (2003) Adipogenesis: a cross-talk between cell proliferation and cell differentiation. Ann Med 35:79–85

    Article  PubMed  Google Scholar 

  29. Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114

    Article  CAS  PubMed  Google Scholar 

  30. Huang J, Jiang D, Zhao S, Wang A (2019) Propranolol suppresses infantile hemangioma cell proliferation and promotes apoptosis by upregulating miR-125b expression. Anti-Cancer Drugs 30:501–507

    Article  CAS  PubMed  Google Scholar 

  31. Liu LH, Li H, Li JP, Zhong H, Zhang HC, Chen J, Xiao T (2011) miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3. Biochem Biophys Res Commun 416:31–38

    Article  CAS  PubMed  Google Scholar 

  32. Xu N, Brodin P, Wei T, Meisgen F, Eidsmo L, Nagy N, Kemeny L, Ståhle M, Sonkoly E, Pivarcsi A (2011) MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J Invest Dermatol 131:1521–1529

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Li M, Sun Y, Cai H, Lan X, Huang Y, Bai Y, Qi X, Chen H (2016) The developmental transcriptome sequencing of bovine skeletal muscle reveals a long noncoding RNA, lncMD, promotes muscle differentiation by sponging miR-125b. Biochim Biophys Acta 1863:2835–2845

    Article  CAS  PubMed  Google Scholar 

  34. Cui Y, Xiao Z, Han J, Sun J, Ding W, Zhao Y, Chen B, Li X, Dai J (2012) MiR-125b orchestrates cell proliferation, differentiation and migration in neural stem/progenitor cells by targeting Nestin. BMC Neurosci 13:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta 1803:1231–1243

    Article  CAS  PubMed  Google Scholar 

  36. Ren J, Jin P, Wang E, Marincola FM, Stroncek DF (2009) MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J Transl Med 7:20

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xin F, Li M, Balch C, Thomson M, Fan M, Liu Y, Hammond SM, Kim S, Nephew KP (2008) Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics 25:430–434

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E, Chowdhury D, Dykxhoorn DM, Tsai P, Hofmann O (2009) miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol Cell 35:610–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim YJ, Hwang SH, Cho HH, Shin KK, Bae YC, Jung JS (2012) MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol 227:183–193

    Article  CAS  PubMed  Google Scholar 

  40. Lopes-Marques M, Machado AM, Ruivo R, Fonseca E, Carvalho E, Castro LFC (2018) Expansion, retention and loss in the Acyl-CoA synthetase “Bubblegum”(Acsbg) gene family in vertebrate history. Gene 664:111–118

    Article  CAS  PubMed  Google Scholar 

  41. Watkins PA, Maiguel D, Jia Z, Pevsner J (2007) Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res 48:2736–2750

    Article  CAS  PubMed  Google Scholar 

  42. Pei Z, Oey NA, Zuidervaart MM, Jia Z, Li Y, Steinberg SJ, Smith KD, Watkins PA (2003) The acyl-CoA synthetase “bubblegum” (lipidosin): further characterization and role in neuronal fatty acid beta-oxidation. J Biol Chem 278:47070–47078

    Article  CAS  PubMed  Google Scholar 

  43. Guo L, Cui H, Zhao G, Liu R, Li Q, Zheng M, Guo Y, Wen J (2018) Intramuscular preadipocytes impede differentiation and promote lipid deposition of muscle satellite cells in chickens. BMC Genomics 19:838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D’Andre HC, Paul W, Shen X, Jia X, Zhang R, Sun L, Zhang X (2013) Identification and characterization of genes that control fat deposition in chickens. J Anim Sci Biotechnol 4:43

    Article  Google Scholar 

  45. Qin Y, Zhao J, Min X, Wang M, Luo W, Wu D, Yan Q, Li J, Wu X, Zhang J (2014) MicroRNA-125b inhibits lens epithelial cell apoptosis by targeting p53 in age-related cataract. Biochim Biophys Acta 1842:2439–2447

    Article  CAS  PubMed  Google Scholar 

  46. Wu N, Xiao L, Zhao X, Zhao J, Wang J, Wang F, Cao S, Lin X (2012) miR-125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Lett 586:3831–3839

    Article  CAS  PubMed  Google Scholar 

  47. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, Da Piedade I, Gunsalus KC, Stoffel M (2005) Combinatorial microRNA target predictions. Nat Genet 37:495

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by a grant from the National Natural Science Foundation of China (Nos. 32072692 and 31572356), the Program for Innovation Research Team of Ministry of Education (IRT16R23) and the Scientific Studio of Zhongyuan Scholars (No. 30601985).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, G.L.; data curation, Y.L. and G.S.; formal analysis, W.J.; funding acquisition, G.L., Y.T., and X.K.; investigation, G.L., Y.C., W.J., and B.Z.; resources, H.L. and X.K.; software, Z.L. and W.L.; validation, Y.Z. and B.Z.; visualization, Y.C.; writing—original draft, S.F.; writing—review and editing, G.L. and Y.C.

Corresponding authors

Correspondence to Guoxi Li or Yadong Tian.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Informed Consent

We confirm that this manuscript has not been published elsewhere and all authors agree to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Chen, Y., Jin, W. et al. Effects of miR-125b-5p on Preadipocyte Proliferation and Differentiation in Chicken. Mol Biol Rep 48, 491–502 (2021). https://doi.org/10.1007/s11033-020-06080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06080-4

Keywords

Navigation