Skip to main content

Advertisement

Log in

Association study of leukocyte telomere length and genetic polymorphism within hTERT promoter with type 2 diabetes in Bangladeshi population

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Telomeres are protective cap on the ends of DNA of non-coding tandem repeats of TTAGGG. Human telomerase reverse transcriptase (hTERT) is a catalytic subunit of telomerase that maintains the structure of telomeres. Type 2 diabetes (T2D) affects multi-organ and telomere length by altering telomerase activity. We aimed to evaluate the relative telomere length (RTL) and risk association of rs2853669 with T2D in Bangladeshi population. RTL was measured in 408 unrelated Bangladeshi (224 T2D and 184 healthy) using primers for target gene and reference gene albumin. Genotypic frequencies for rs2853669 were determined using TaqMan® probes. The mean level of age adjusted RTL (AARTL) varied significantly between the healthy and individuals with T2D for all the genotypes with respect to rs2853669. Moreover, healthy individuals had significantly higher AARTL than T2D. Similar findings were observed when study participants were stratified based on their gender. Association studies revealed that under codominant model of inheritance, TC genotype showed protective role against development of type 2 diabetes. This study suggests a possible role of telomere biology in T2DM, but their association needs to be evaluated further with a larger series and matched healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. De Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5:323–329

    PubMed  Google Scholar 

  2. De Tata V (2014) Age-related impairment of pancreatic Beta-cell function: pathophysiological and cellular mechanisms. Front Endocrinol (Lausanne) 5:138

    Google Scholar 

  3. Kuhlow D, Florian S, von Figura G, Weimer S, Schulz N, Petzke KJ, Zarse K, Pfeiffer AF, Rudolph KL, Ristow M (2010) Telomerase deficiency impairs glucose metabolism and insulin secretion. Aging (Albany NY) 2:650–658

    CAS  Google Scholar 

  4. Guo N, Parry EM, Li LS, Kembou F, Lauder N, Hussain MA, Berggren PO, Armanios M (2011) Short telomeres compromise β-cell signaling and survival. PLoS ONE 6:e17858

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Richter T, Von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42:1039–1042

    CAS  PubMed  Google Scholar 

  6. Cui H, Kong Y, Zhang H (2012) Oxidative Stress, Mitochondrial Dysfunction, and Aging. J Signal Transduct 2012:13

    Google Scholar 

  7. International Diabetes Federation International (2019) IDF Diabetes Atlas 2019, International Diabetes Federation. http://www.idf.org/about-diabetes/facts-figures.

  8. Whiting DR et al (2011) ‘IDF Diabetes Atlas : Global estimates of the prevalence of diabetes for 2011 and 2030’, Diabetes Research and Clinical Practice. Elsevier Ireland Ltd 94(3):311–321. https://doi.org/10.1016/j.diabres.2011.10.029

    Article  Google Scholar 

  9. Schraml E, Grillari J (2012) From cellular senescence to age-associated diseases: the miRNA connection. Longev Healthspan 1:10

    PubMed  PubMed Central  Google Scholar 

  10. Halter JB, Musi N, McFarland Horne F, Crandall JP, Goldberg A, Harkless L, Hazzard WR, Huang ES, Kirkman MS, Plutzky J, Schmader KE, Zieman S, High KP (2014) Diabetes and cardiovascular disease in older adults: current status and future directions. Diabetes 63:2578–2589

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cong YS, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66:407–425

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Maubaret CG, Salpea KD, Jain A, Cooper JA, Hamsten A, Sanders J, Montgomery H, Neil A, Nair D, Humphries SE, HIFMECH consortium, Simon Broome Research Group. Telomeres are shorter in myocardial infarction patients compared to healthy subjects: correlation with environmental risk factors. J Mol Med (Berl) 2010;88:785–794.

  13. Ding H, Chen C, Shaffer JR, Liu L, Xu Y, Wang X, Hui R, Wang DW (2012) Telomere length and risk of stroke in Chinese. Stroke 43:658–663

    CAS  PubMed  Google Scholar 

  14. Zhang W, Chen Y, Yang X, Fan J, Mi X, Wang J, Zhang C, Hu FB, Hui R (2012) Functional haplotypes of the hTERT gene, leukocyte telomere length shortening, and the risk of peripheral arterial disease. PLoS ONE 7:e47029

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hochstrasser T, Marksteiner J, Humpel C (2012) Telomere length is age-dependent and reduced in monocytes of Alzheimer patients. Exp Gerontol 47:160–163

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou Y, Ning Z, Lee Y, Hambly BD, McLachlan CS (2016) Shortened leukocyte telomere length in type 2 diabetes mellitus: genetic polymorphisms in mitochondrial uncoupling proteins and telomeric pathways. Clin Transl Med 5:8

    PubMed  PubMed Central  Google Scholar 

  17. Monickaraj F, Aravind S, Gokulakrishnan K, Sathishkumar C, Prabu P, Prabu D, Mohan V, Balasubramanyam M (2012) Accelerated aging as evidenced by increased telomere shortening and mitochondrial DNA depletion in patients with type 2 diabetes. Mol Cell Biochem 365:343–350

    CAS  PubMed  Google Scholar 

  18. Shen Q, Zhao X, Yu L, Zhang Z, Zhou D, Kan M, Zhang D, Cao L, Xing Q, Yang Y, Xu H, He L, Liu Y (2012) Association of leukocyte telomere length with type 2 diabetes in mainland Chinese populations. J Clin Endocrinol Metab 97:1371–1374

    CAS  PubMed  Google Scholar 

  19. Xiao F, Zheng X, Cui M, Shi G, Chen X, Li R, Song Z, Rudolph KL, Chen B, Ju Z (2011) Telomere dysfunction-related serological markers are associated with type 2 diabetes. Diabetes Care 34:2273–2278

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Salpea KD, Talmud PJ, Cooper JA, Maubaret CG, Stephens JW, Abelak K, Humphries SE (2010) Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis 209:42–50

    CAS  PubMed  PubMed Central  Google Scholar 

  21. You NC, Chen BH, Song Y, Lu X, Chen Y, Manson JE, Kang M, Howard BV, Margolis KL, Curb JD, Phillips LS, Stefanick ML, Tinker LF, Liu S (2012) A prospective study of leukocyte telomere length and risk of type 2 diabetes in postmenopausal women. Diabetes 61:2998–3004

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Testa R, Olivieri F, Sirolla C, Spazzafumo L, Rippo MR, Marra M, Bonfigli AR, Ceriello A, Antonicelli R, Franceschi C, Castellucci C, Testa I, Procopio AD (2011) Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med 28:1388–1394

    CAS  PubMed  Google Scholar 

  23. Mosrati MA, Malmström A, Lysiak M, Krysztofiak A, Hallbeck M, Milos P, Hallbeck AL, Bratthäll C, Strandéus M, Stenmark-Askmalm M, Söderkvist P (2015) TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget 6:16663–16673

    PubMed  PubMed Central  Google Scholar 

  24. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30:e47

    PubMed  PubMed Central  Google Scholar 

  25. Cawthon RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37:e21

    PubMed  PubMed Central  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  27. Rodriguez S, Gaunt TR, Day IN (2009) Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol 169:505–514

    PubMed  PubMed Central  Google Scholar 

  28. Sanchez-Espiridion B, Chen M, Chang JY, Lu C, Chang DW, Roth JA, Wu X, Gu J (2014) Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res 74:2476–2486

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Martinez-Delgado B, Yanowsky K, Inglada-Perez L, Domingo S, Urioste M et al (2011) Genetic anticipation is associated with telomere shortening in hereditary breast cancer. PLoS Genet 7:e1002182

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Qu S, Wen W, Shu XO, Chow WH, Xiang YB, Wu J, Ji BT, Rothman N, Yang G, Cai Q, Gao YT, Zheng W (2013) Association of leukocyte telomere length with breast cancer risk: nested case-control findings from the Shanghai Women’s Health Study. Am J Epidemiol 177:617–624

    PubMed  PubMed Central  Google Scholar 

  31. Cui Y, Cai Q, Qu S, Chow WH, Wen W, Xiang YB, Wu J, Rothman N, Yang G, Shu XO, Gao YT, Zheng W (2012) Association of leukocyte telomere length with colorectal cancer risk: nested case-control findings from the Shanghai Women’s Health Study. Cancer Epidemiol Biomarkers Prev 21:1807–1813

    PubMed  PubMed Central  Google Scholar 

  32. Risques RA, Vaughan TL, Li X, Odze RD, Blount PL, Ayub K, Gallaher JL, Reid BJ, Rabinovitch PS (2007) Leukocyte telomere length predicts cancer risk in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev 16:2649–2655

    CAS  PubMed  Google Scholar 

  33. Boscolo-Rizzo P, Da Mosto MC, Rampazzo E, Giunco S, Del Mistro A, Menegaldo A, Baboci L, Mantovani M, Tirelli G, De Rossi A (2016) Telomeres and telomerase in head and neck squamous cell carcinoma: from pathogenesis to clinical implications. Cancer Metastasis Rev 35:457–474

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamada-Hishida H, Nobeyama Y, Nakagawa H (2018) Correlation of telomere length to malignancy potential in non-melanoma skin cancers. Oncol Lett 15:393–399

    PubMed  Google Scholar 

  35. Olivieri F, Lorenzi M, Antonicelli R, Testa R, Sirolla C, Cardelli M, Mariotti S, Marchegiani F, Marra M, Spazzafumo L, Bonfigli AR, Procopio A (2009) Leukocyte telomere shortening in elderly Type2DM patients with previous myocardial infarction. Atherosclerosis 206:588–593

    CAS  PubMed  Google Scholar 

  36. Gutmajster E, Chudek J, Augusciak-Duma A, Szwed M, Szybalska A, Mossakowska M, Puzianowska-Kuznicka M, Wiecek A, Sieron AL (2018) Possible association of the TERT promoter polymorphisms rs2735940, rs7712562 and rs2853669 with diabetes mellitus in obese elderly Polish population: results from the national PolSenior study. J Appl Genet 59:291–299

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu D, Dwyer J, Li H, Duan W, Liu JP (2008) Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J Biol Chem 283:23567–23580

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cheng F, Luk AO, Tam CHT, Fan B, Wu H, Yang A, Lau ESH, Ng ACW, Lim CKP, Lee HM, Chow E, Kong AP, Keech AC, Joglekar MV, So WY, Jenkins AJ, Chan JCN, Hardikar AA, Ma RCW (2020) Shortened Relative Leukocyte Telomere Length Is Associated With Prevalent and Incident Cardiovascular Complications in Type 2 Diabetes: Analysis From the Hong Kong Diabetes Register. Diabetes Care 43(9):2257–2265

    CAS  PubMed  Google Scholar 

  39. Liu Y, Ma C, Li P, Ma C, He S, Ping F, Zhang H, Li W, Xu L, Li Y (2020) Leukocyte Telomere Length Independently Predicts 3-Year Diabetes Risk in a Longitudinal Study of Chinese Population. Oxidative Medicine and Cellular Longevity 2020:9256107

    PubMed  PubMed Central  Google Scholar 

  40. Bethancourt HJ, Kratz M, Beresford SAA et al (2017) No association between blood telomere length and longitudinally assessed diet or adiposity in a young adult Filipino population. Eur J Nutr 56:295–308

    CAS  PubMed  Google Scholar 

  41. Verhulst S, Dalgård C, Labat C et al (2016) A short leucocyte telomere length is associated with development of insulin resistance. Diabetologia 59:1258–1265

    CAS  PubMed  Google Scholar 

  42. Salpea KD, Maubaret CG, Kathagen A et al (2013) The effect of pro-inflammatory conditioning and/or high glucose on telomere shortening of aging fibroblasts. PLoS ONE 8:e73756

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rains JL, Jain SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50:567–575

    CAS  PubMed  Google Scholar 

  44. Bardini G, Rotella CM, Giannini S (2012) Dyslipidemia and diabetes: reciprocal impact of impaired lipid metabolism and Beta-cell dysfunction on micro- and macrovascular complications. Rev Diabet Stud 9:82–93

    PubMed  PubMed Central  Google Scholar 

  45. Calado RT, Young NS (2009) Telomere diseases. N Engl J Med 361:2353–2365

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH (2001) Telomere shortening in atherosclerosis. Lancet 358:472–473

    CAS  PubMed  Google Scholar 

  47. Brouilette SW, Moore JS, McMahon AD, Thompson JR, Ford I, Shepherd J, Packard CJ, Samani NJ, West of Scotland Coronary Prevention Study Group. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet 2007;369:107–114.

  48. Nawrot TS, Staessen JA, Gardner JP, Aviv A (2004) Telomere length and possible link to X chromosome. Lancet 363:507–510

    CAS  PubMed  Google Scholar 

  49. Adams J, Martin-Ruiz C, Pearce MS, White M, Parker L, von Zglinicki T (2007) No association between socio-economic status and white blood cell telomere length. Aging Cell 6:125–128

    CAS  PubMed  Google Scholar 

  50. Bekaert S, Rietzschel ER, De Buyzere ML, De Bacquer D, Langlois M, Segers P, Cooman L, Van Damme P, Cassiman P, Van Criekinge W, Verdonck P, De Backer GG, Gillebert TC, Van Oostveldt P (2007) Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 6:639–647

    CAS  PubMed  Google Scholar 

  51. Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M, Aviv A (2007) Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 165:14–21

    PubMed  Google Scholar 

  52. Hunt SC, Chen W, Gardner JP, Kimura M, Srinivasan SR, Eckfeldt JH, Berenson GS, Aviv A (2008) Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study. Aging Cell 7:451–458

    CAS  PubMed  Google Scholar 

  53. Shiels PG, McGlynn LM, MacIntyre A, Johnson PC, Batty GD, Burns H, Cavanagh J, Deans KA, Ford I, McConnachie A, McGinty A, McLean JS, Millar K, Sattar N, Tannahill C, Velupillai YN, Packard CJ (2011) Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PLoS ONE 6:e22521

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fagan E, Sun F, Bae H, Elo I, Andersen SL, Lee J, Christensen K, Thyagarajan B, Sebastiani P, Perls T, Honig LS, Schupf N (2017) Long Life Family Study. Telomere length is longer in women with late maternal age. Menopause. 24:497–501

    PubMed  PubMed Central  Google Scholar 

  55. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366:662–664

    CAS  PubMed  Google Scholar 

  56. Zee RY, Castonguay AJ, Barton NS, Germer S, Martin M (2010) Mean leukocyte telomere length shortening and type 2 diabetes mellitus: a case-control study. Transl Res 155:166–169

    CAS  PubMed  Google Scholar 

  57. Axson EL, Peterson KE, Tellez-Rojo MM, Goodrich JM, Meeker J, Mercado-García A, Solano M, Needham BL (2018) Sex Differences in Telomere Length Are Not Mediated by Sex Steroid Hormones or Body Size in Early Adolescence. Gender and the Genome 2:68–75

    Google Scholar 

  58. Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138

    CAS  PubMed  Google Scholar 

  59. Matsubara Y, Murata M, Watanabe K, Saito I, Miyaki K, Omae K, Ishikawa M, Matsushita K, Iwanaga S, Ogawa S, Ikeda Y (2006) Telomere length of normal leukocytes is affected by a functional polymorphism of hTERT. Biochem Biophys Res Commun 341:128–131

    CAS  PubMed  Google Scholar 

  60. Helbig S, Wockner L, Bouendeu A, Hille-Betz U, McCue K, French JD, Edwards SL, Pickett HA, Reddel RR, Chenevix-Trench G, Dörk T, Beesley J (2017) Functional dissection of breast cancer risk-associated TERT promoter variants. Oncotarget 8:67203–67217

    PubMed  PubMed Central  Google Scholar 

  61. Melicher D, Buzas EI, Falus A (2015) Genetic and epigenetic trends in telomere research: a novel way in immunoepigenetics. Cell Mol Life Sci 72:4095–4109

    CAS  PubMed  Google Scholar 

  62. Heidenreich B, Rachakonda PS, Hemminki K, Kumar R (2014) TERT promoter mutations in cancer development. Curr Opin Genet Dev 24:30–37

    CAS  PubMed  Google Scholar 

  63. Gutmajster E, Chudek J, Augusciak-Duma A, Szwed M, Szybalska A, Mossakowska M, Puzianowska-Kuznicka M, Wiecek A, Sieron AL (2018) Possible association of the TERT promoter polymorphisms rs2735940, rs7712562 and rs2853669 with diabetes mellitus in obese elderly Polish population: results from the national PolSenior study. J Appl Genet 59(3):291–299

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang W, Chen Y, Yang X, Fan J, Mi X, Wang J et al (2012) Functional Haplotypes of the hTERT Gene, Leukocyte Telomere Length Shortening, and the Risk of Peripheral Arterial Disease. PLoS ONE 7(10):e47029

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Soerensen M, Thinggaard M, Nygaard M et al (2012) Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: a cross-sectional and longitudinal analysis. Aging Cell 11:223–227

    CAS  PubMed  Google Scholar 

  66. Bressler J, Franceschini N, Demerath EW, Mosley TH, Folsom AR, Boerwinkle E (2015) Sequence variation in telomerase reverse transcriptase (TERT) as a determinant of risk of cardiovascular disease: the Atherosclerosis Risk in Communities (ARIC) study. BMC Med Genet 16:52

    PubMed  PubMed Central  Google Scholar 

  67. Andrew T, Aviv A, Falchi M, Surdulescu GL, Gardner JP, Lu X, Kimura M, Kato BS, Valdes AM, Spector TD (2006) Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs. Am J Hum Genet 78:480–486

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mangino M, Brouilette S, Braund P, Tirmizi N, Vasa-Nicotera M, Thompson JR, Samani NJ (2008) A regulatory SNP of the BICD1 gene contributes to telomere length variation in humans. Hum Mol Genet 17:2518–2523

    CAS  PubMed  Google Scholar 

  69. Gu J, Chen M, Shete S, Amos CI, Kamat A, Ye Y, Lin J, Dinney CP, Wu X (2011) A genome-wide association study identifies a locus on chromosome 14q21 as a predictor of leukocyte telomere length and as a marker of susceptibility for bladder cancer. Cancer Prev Res (Phila) 4:514–521

    CAS  Google Scholar 

  70. Levy D, Neuhausen SL, Hunt SC, Kimura M, Hwang SJ, Chen W, Bis JC, Fitzpatrick AL, Smith E, Johnson AD, Gardner JP, Srinivasan SR, Schork N, Rotter JI, Herbig U, Psaty BM, Sastrasinh M, Murray SS, Vasan RS, Province MA, Glazer NL, Lu X, Cao X, Kronmal R, Mangino M, Soranzo N, Spector TD, Berenson GS, Aviv A (2010) Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc Natl Acad Sci U S A 107:9293–9298

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This research work was partly supported by the research grant from The World Academy of Sciences, (Ref No. 15-167 RG/BIO/AS_G-FR3240287016) awarded to Professor A.H.M. Nurun Nabi. Mr Atoll Goswami and Mr Nafiul Huda received studentships from The World Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

AHMNN conceived the idea. MIH designed and AG, NH, TY performed the experiments. AHMNN and AKMMH wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to A. H. M. Nurun Nabi.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 397 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, A., Huda, N., Yasmin, T. et al. Association study of leukocyte telomere length and genetic polymorphism within hTERT promoter with type 2 diabetes in Bangladeshi population. Mol Biol Rep 48, 285–295 (2021). https://doi.org/10.1007/s11033-020-06045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06045-7

Keywords

Navigation