Skip to main content

Advertisement

Log in

Molecular and hormonal changes caused by long-term use of high dose pregabalin on testicular tissue: the role of p38 MAPK, oxidative stress and apoptosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In 1990, pregabalin was introduced as a novel antiepileptic drug that acts by binding selectively to the alpha-2-delta subunits of voltage-gated calcium channels resulting in increasing neuronal GABA levels and inhibiting the release of exciting neurotransmitters. The aim of our study is to assess the hazardous effects of prolonged high-dose pregabalin (like that abused by addicts) on testes and to clarify the potential causative mechanisms. The current study was conducted on 70 adult male Wistar albino rats which were divided into 7 groups. In our study we evaluated the effect of pregabalin, at concentrations 150 and 300 mg/kg/day for 90 days, on hormones; FSH, LH, testosterone and prolactin secretion. Our study also evaluated the expression of apoptosis-related genes BAX and BCL2 in testicular tissue in addition to the western blotted analysis of p38 Mitogen activated protein kinases (p38 MAPK). The levels of reduced glutathione, malondialdehyde and superoxide dismutase were also measured. Pregabalin decreased testosterone level while FSH, LH and prolactin showed a significant increase. It also produced genotoxicity through reversal of the BAX/BCL2 ratio; increased p38 MAPK level and induction of oxidative stress markers. The concomitant administration of vitamin E significantly reduced all the previously mentioned biochemical and hormonal adverse effects caused by pregabalin. Pregabalin can adversely affect male fertility particularly in addicts and patients who are being treated with it for long periods as those suffering from neuropathies and seizures. Antioxidants like vitamin E could have a role in amelioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E, Vanderpoel S (2009) International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009∗. Fertil Steril 92:1520–1524. https://doi.org/10.1016/j.fertnstert.2009.09.009

    Article  CAS  PubMed  Google Scholar 

  2. Taylor A (2003) Extent of the problem. Br Med J 327:434–436. https://doi.org/10.1136/bmj.327.7412.434

    Article  Google Scholar 

  3. Sharlip ID, Jarow JP, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, Schlegel PN, Howards SS, Nehra A, Damewood MD, Overstreet JW, Sadovsky R (2002) Best practice policies for male infertility. Fertil Steril 77:873–882. https://doi.org/10.1016/S0015-0282(02)03105-9

    Article  PubMed  Google Scholar 

  4. Raheem AA, Ralph D (2011) Male infertility: causes and investigations. Trends Urol Men’s Health 2:8–11

    Article  Google Scholar 

  5. Abdel Raheem A, Ralph D, Minhas S (2012) Male infertility. Br J Med Surg Urol 5:254–268. https://doi.org/10.1016/j.bjmsu.2012.06.003

    Article  Google Scholar 

  6. Kulkarni M, Hayden C, Kayes O (2014) Recreational drugs and male fertility. Trends Urol Men’s Health 5:19–23

    Article  Google Scholar 

  7. Nudell DM, Monoski MM, Lipshultz LI (2002) Common medications and drugs: how they affect male fertility. Urol Clin N Am 29:965–973

    Article  Google Scholar 

  8. Safarinejad MR, Asgari SA, Farshi A, Ghaedi G, Kolahi AA, Iravani S, Khoshdel AR (2013) The effects of opiate consumption on serum reproductive hormone levels, sperm parameters, seminal plasma antioxidant capacity and sperm DNA integrity. Reprod Toxicol 36:18–23. https://doi.org/10.1016/j.reprotox.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  9. Schifano F (2014) Misuse and abuse of pregabalin and gabapentin: cause for concern? CNS Drugs 28:491–496. https://doi.org/10.1007/s40263-014-0164-4

    Article  CAS  PubMed  Google Scholar 

  10. Taher MA, Anber ZNH (2015) Effect of diazepam on the reproductive system in male rats. World J Pharm Pharm Sci 4:60–78

    CAS  Google Scholar 

  11. Zoroufchi BH, Doustmohammadi H, Mokhtari T, Abdollahpour A (2020) Benzodiazepines related sexual dysfunctions: a critical review on pharmacology and mechanism of action. Rev Int Androl. https://doi.org/10.1016/j.androl.2019.08.003

    Article  Google Scholar 

  12. Semet M, Paci M, Saïas-Magnan J, Metzler-Guillemain C, Boissier R, Lejeune H, Perrin J (2017) The impact of drugs on male fertility: a review. Andrology 5:640–663. https://doi.org/10.1111/andr.12366

    Article  CAS  PubMed  Google Scholar 

  13. Isojärvi JIT, Taubøll E, Herzog AG (2005) Effect of antiepileptic drugs on reproductive endocrine function in individuals with epilepsy. CNS Drugs 19:207–223. https://doi.org/10.2165/00023210-200519030-00003

    Article  PubMed  Google Scholar 

  14. Isojarvi JIT, Lofgren E, Juntunen KST, Pakarinen AJ, Paivansalo M, Rautakorpi I, Tuomivaara L (2004) Effect of epilepsy and antiepileptic drugs on male reproductive health. Neurology 62:247–253. https://doi.org/10.1212/01.WNL.0000098936.46730.64

    Article  CAS  PubMed  Google Scholar 

  15. Yang Y, Wang X (2016) Sexual dysfunction related to antiepileptic drugs in patients with epilepsy. Expert Opin Drug Saf 15:31–42. https://doi.org/10.1517/14740338.2016.1112376

    Article  CAS  PubMed  Google Scholar 

  16. Goodman CW, Brett AS (2017) Gabapentin and pregabalin for pain—is increased prescribing a cause for concern? N Engl J Med 377:411–414

    Article  PubMed  Google Scholar 

  17. Torjesen I (2019) Pregabalin and gabapentin: what impact will reclassification have on doctors and patients? BMJ. https://doi.org/10.1136/bmj.l1107

    Article  PubMed  Google Scholar 

  18. Urquhart L (2018) Top drugs and companies by sales in 2017. Nat Rev Drug Discov 17:232

    Article  CAS  PubMed  Google Scholar 

  19. Cairns R, Schaffer AL, Ryan N, Pearson S, Buckley NA (2019) Rising pregabalin use and misuse in Australia: trends in utilization and intentional poisonings. Addiction 114:1026–1034. https://doi.org/10.1111/add.14412

    Article  PubMed  Google Scholar 

  20. Stannard C (2016) Misuse of gabapentin and pregabalin: a marker for a more serious malaise? Addiction 111:1699–1700. https://doi.org/10.1111/add.13408

    Article  PubMed  Google Scholar 

  21. Evoy KE, Morrison MD, Saklad SR (2017) Abuse and misuse of pregabalin and gabapentin. Drugs 77:403–426. https://doi.org/10.1007/s40265-017-0700-x

    Article  CAS  PubMed  Google Scholar 

  22. Chiappini S, Schifano F (2016) A decade of gabapentinoid misuse: an analysis of the European Medicines Agency’s ‘Suspected Adverse Drug Reactions’ database. CNS Drugs 30:647–654. https://doi.org/10.1007/s40263-016-0359-y

    Article  PubMed  Google Scholar 

  23. Yargic I, Ozdemiroglu FA (2011) Pregabalin abuse: a case report/Pregabalin kötüye kullanımı: Bir olgu sunumu. Bull Clin Psychopharmacol. https://doi.org/10.5350/KPB-BCP201121110

    Article  Google Scholar 

  24. Ashwini S, Amit D, Ivan N, Alka P (2015) Pregabalin dependence with pregabalin induced intentional self-harm behavior: a case report. Indian J Psychiatry 57:110–111. https://doi.org/10.4103/0019-5545.148550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Millar J, Sadasivan S, Weatherup N, Lutton S (2013) Lyrica nights–recreational pregabalin abuse in an urban emergency department. Emerg Med J 30:866–880. https://doi.org/10.1136/emermed-2013-203113.20

    Article  Google Scholar 

  26. Carrus D, Schifano F (2012) Pregabalin misuse-related issues; intake of large dosages, drug-smoking allegations, and possible association with myositis: two case reports. J Clin Psychopharmacol 32:839–840. https://doi.org/10.1097/JCP.0b013e318272864d

    Article  PubMed  Google Scholar 

  27. Çıtak Ekici Ö, Şahiner V, Erzin G, Ocak D, Şahiner ŞY, Göka E (2019) Pregabalin abuse among patients with opioid use disorders may increase the severity of withdrawal symptoms: a single-center, case–control study. Psychiatry Clin Psychopharmacol 29:479–483. https://doi.org/10.1080/24750573.2019.1673946

    Article  CAS  Google Scholar 

  28. Gahr M, Freudenmann RW, Hiemke C, Kölle MA, Schönfeldt-Lecuona C (2013) Pregabalin abuse and dependence in Germany: results from a database query. Eur J Clin Pharmacol 69:1335–1342. https://doi.org/10.1007/s00228-012-1464-6

    Article  PubMed  Google Scholar 

  29. Schjerning O, Pottegård A, Damkier P, Rosenzweig M, Nielsen J (2016) Use of pregabalin—a nationwide pharmacoepidemiological drug utilization study with focus on abuse potential. Pharmacopsychiatry 49:155–161. https://doi.org/10.1055/s-0042-101868

    Article  CAS  PubMed  Google Scholar 

  30. Ibrahim MA-L, Salah-Eldin A-E (2019) Chronic addiction to tramadol and withdrawal effect on the spermatogenesis and testicular tissues in adult male albino rats. Pharmacology 103:202–211. https://doi.org/10.1159/000496424

    Article  CAS  PubMed  Google Scholar 

  31. Barenys M, Macia N, Camps L, de Lapuente J, Gomez-Catalan J, Gonzalez-Linares J, Borras M, Rodamilans M, Llobet JM (2009) Chronic exposure to MDMA (ecstasy) increases DNA damage in sperm and alters testes histopathology in male rats. Toxicol Lett 191:40–46. https://doi.org/10.1016/j.toxlet.2009.08.002

    Article  CAS  PubMed  Google Scholar 

  32. Mandal TK, Das NS (2009) Effect of δ-9-tetrahydrocannabinol on altered antioxidative enzyme defense mechanisms and lipid peroxidation in mice testes. Eur J Pharmacol 607:178–187. https://doi.org/10.1016/j.ejphar.2009.01.025

    Article  CAS  PubMed  Google Scholar 

  33. Mandal TK, Das NS (2010) Testicular toxicity in cannabis extract treated mice: association with oxidative stress and role of antioxidant enzyme systems. Toxicol Ind Health 26:11–23. https://doi.org/10.1177/0748233709354553

    Article  CAS  PubMed  Google Scholar 

  34. FDA (2019) Lyrica highlights of prescribing information. FDA 4437445:1–32

  35. Al-Zubaidi AM, Al-Salihi AR, Al-Dujaily SS (2015) The effect of pregabalin (Lyrica) on the spermatogenic cells in rat. Iraqi J Embryos Infertil Res 5:9–13

    Google Scholar 

  36. Bilginer B, Önal BM, Narin F, Yildiz IZ, Gürbüz OA, Ergün EL, Özön A, Akalan N (2009) The effects of long-term use of pregabalin on reproductive endocrine hormones and testicular morphology in adult male rats. Turk Klin J Med Sci 29:1365–1369

    CAS  Google Scholar 

  37. Bostanian S, Shariati M, Zamanpoor M (2016) Effect of pregabalin on pituitary gonad axis and testis histological changes in adult rat. J Appl Environ Biol Sci 6:165–171

    Google Scholar 

  38. Kamel MA, Khalifa HA (2015) Alpha 2-delta (α 2-δ) ligand pregabalin could adversely affects male fertility. Int J Pharma Sci 5(5):1226–1229

    Google Scholar 

  39. Rezq A (2014) Effects study of Nigella sativa, its oil and their combination with vitamin E on oxidative stress in rats. Am J Appl Sci 11:1079–1086. https://doi.org/10.3844/ajassp.2014.1079.1086

    Article  CAS  Google Scholar 

  40. Li MWM, Mruk DD, Cheng CY (2009) Mitogen-activated protein kinases in male reproductive function. Trends Mol Med 15:159–168. https://doi.org/10.1016/j.molmed.2009.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiong Z, Zhang L, Fan M, Han L, Wu Q, Liu S, Miao J, Liu L, Wang X, Guo B, Tong D, Ni L, Yang J, Huang C (2019) β-Endorphin induction by psychological stress promotes Leydig cell apoptosis through p38 MAPK pathway in male rats. Cells 8:1265. https://doi.org/10.3390/cells8101265

    Article  CAS  PubMed Central  Google Scholar 

  42. Jia X, Xu Y, Wu W, Fan Y, Wang G, Zhang T, Su W (2017) Aroclor1254 disrupts the blood–testis barrier by promoting endocytosis and degradation of junction proteins via p38 MAPK pathway. Cell Death Dis 8:e2823. https://doi.org/10.1038/cddis.2017.224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA (2009) p38 MAPK: stress responses from molecular mechanisms to therapeutics. Trends Mol Med 15:369–379. https://doi.org/10.1016/j.molmed.2009.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schifano F, D’Offizi S, Piccione M, Corazza O, Deluca P, Davey Z, Di Melchiorre G, Di Furia L, Farré M, Flesland L, Mannonen M, Majava A, Pagani S, Peltoniemi T, Siemann H, Skutle A, Torrens M, Pezzolesi C, van der Kreeft P, Scherbaum N (2011) Is there a recreational misuse potential for pregabalin analysis of anecdotal online reports in comparison with related gabapentin and clonazepam data. Psychother Psychosom 80:118–122. https://doi.org/10.1159/000321079

    Article  PubMed  Google Scholar 

  45. Manouze H, Ghestem A, Poillerat V, Bennis M, Ba-M’hamed S, Benoliel JJ, Becker C, Bernard C (2019) Effects of single cage housing on stress, cognitive, and seizure parameters in the rat and mouse pilocarpine models of epilepsy. eNeuro. https://doi.org/10.1523/ENEURO.0179-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nair A, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7:27. https://doi.org/10.4103/0976-0105.177703

    Article  PubMed  PubMed Central  Google Scholar 

  47. Underwood W, Anthony R (2013) AVMA guidelines for the euthanasia of animals: 2020 edition. AVMA, Schaumburg

    Google Scholar 

  48. Nakai JS, Elwin J, Chu I, Marro L (2005) Effect of anaesthetics[sol ]terminal procedures on neurotransmitters from non-dosed and aroclor 1254-dosed rats. J Appl Toxicol 25:224–233. https://doi.org/10.1002/jat.1058

    Article  CAS  PubMed  Google Scholar 

  49. Taha SHN, Zaghloul HS, Ali AAER, Gaballah IF, Rashed LA, Aboulhoda BE (2020) The neurotoxic effect of long-term use of high-dose pregabalin and the role of alpha tocopherol in amelioration: implication of MAPK signaling with oxidative stress and apoptosis. Naunyn Schmiedebergs Arch Pharmacol. https://doi.org/10.1007/s00210-020-01875-5

    Article  PubMed  Google Scholar 

  50. Eslami A, Lujan J (2010) Western blotting: sample preparation to detection. J Vis Exp. https://doi.org/10.3791/2359

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hrabovszky E, Liposits Z (2013) Afferent neuronal control of Type-I gonadotropin releasing hormone neurons in the human. Front Endocrinol (Lausanne) 4:1–19. https://doi.org/10.3389/fendo.2013.00130

    Article  Google Scholar 

  52. Marieb E, Hoehn K (2013) The reproductive system. In: Beauparlant S (ed) Human anatomy and physiology, 9th edn. Pearson, London, pp 1018–1063

    Google Scholar 

  53. Dabbous Z, Atkin SL (2018) Hyperprolactinaemia in male infertility: clinical case scenarios. Arab J Urol 16:44–52. https://doi.org/10.1016/j.aju.2017.10.002

    Article  PubMed  Google Scholar 

  54. Wei T-C, Huang WJ, Lin ATL, Chen K-K (2013) The role of hormones on semen parameters in patients with idiopathic or varicocele-related oligoasthenoteratozoospermia (OAT) syndrome. J Chin Med Assoc 76:624–628. https://doi.org/10.1016/j.jcma.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  55. Calabrò RS, Bramanti P (2010) Pregabalin-induced severe delayed ejaculation. Epilepsy Behav 19:543. https://doi.org/10.1016/j.yebeh.2010.07.026

    Article  PubMed  Google Scholar 

  56. Hitiris N, Barrett JA, Brodie MJ (2006) Erectile dysfunction associated with pregabalin add-on treatment in patients with partial seizures: five case reports. Epilepsy Behav 8:418–421. https://doi.org/10.1016/j.yebeh.2005.12.001

    Article  PubMed  Google Scholar 

  57. Calabrò RS, De Luca R, Pollicino P, Bramanti P (2013) Anorgasmia during pregabalin add-on therapy for partial seizures. Epileptic Disord 15:358–361. https://doi.org/10.1684/epd.2013.0592

    Article  PubMed  Google Scholar 

  58. Calabrò RS, Marino S, Bramanti P (2011) Sexual and reproductive dysfunction associated with antiepileptic drug use in men with epilepsy. Expert Rev Neurother 11:887–895. https://doi.org/10.1586/ern.11.58

    Article  PubMed  Google Scholar 

  59. Kamel MA (2016) Study on DNA damage and oxidative stress and some biochemical alterations of long term administration of alpha-2 delta (Α2-∆) ligand pregabalin and the possibility of Zingiber officinale in ameliorating these effects in rats. World J Pharm Res 5:1528–1545

    CAS  Google Scholar 

  60. Kohen R, Nyska A (2002) Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30:620–650. https://doi.org/10.1080/01926230290166724

    Article  CAS  PubMed  Google Scholar 

  61. Yilmaz HR, Tufekci A, Hasan R (2012) The effects of pregabalin on liver oxidative stress of rats in pentylenetetrazole induced epileptic seizures. Turk J Biochem 37:338–356

    Google Scholar 

  62. Aydin S, Kaygisiz B, Yildirim C, Karimkhani H, Oner S, Kilic FS (2018) The effects of pregabalin on gastric ulcer formation and antioxidant parameters. Osmangazi J Med 3:1. https://doi.org/10.20515/otd.475139

    Article  Google Scholar 

  63. De Chiara G, Marcocci ME, Torcia M, Lucibello M, Rosini P, Bonini P, Higashimoto Y, Damonte G, Armirotti A, Amodei S, Palamara AT, Russo T, Garaci E, Cozzolino F (2006) Bcl-2 phosphorylation by p38 MAPK. J Biol Chem 281:21353–21361. https://doi.org/10.1074/jbc.M511052200

    Article  CAS  PubMed  Google Scholar 

  64. Guo X, Cao Y, Zhao L, Zhang X, Yan Z, Chen W (2018) p38 mitogen-activated protein kinase gene silencing rescues rat hippocampal neurons from ketamine-induced apoptosis: an in vitro study. Int J Mol Med. https://doi.org/10.3892/ijmm.2018.3750

    Article  PubMed  PubMed Central  Google Scholar 

  65. Almog T, Lazar S, Reiss N, Etkovitz N, Milch E, Rahamim N, Dobkin-Bekman M, Rotem R, Kalina M, Ramon J, Raziel A, Brietbart H, Seger R, Naor Z (2008) Identification of extracellular signal-regulated kinase 1/2 and p38 MAPK as regulators of human sperm motility and acrosome reaction and as predictors of poor spermatozoan quality. J Biol Chem 283:14479–14489. https://doi.org/10.1074/jbc.M710492200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SHT: Conceptualization, Methodology, Writing-Original draft preparation. HSZ: Supervision, Conceptualization. AAA: Supervision, Visualization. LAR: Supervision, Methodology, Investigation, Validation. RMS: Validation. IFG: Writing- Reviewing and Editing.

Corresponding author

Correspondence to Sarah Hamed N. Taha.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The study complies with the Guide for the Care and Use of Laboratory Animals published by the National Institutes of Health (NIH Publications No. 8023, revised 1978) and is approved by the Ethical Committee, Faculty of Medicine, Cairo University and Cairo University Institutional Animal Care and Use Committee (CU-IACUC).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abla Abd El Rahman Ali (Scopus ID 57198724483).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, S.H.N., Zaghloul, H.S., Ali, A.A.E. et al. Molecular and hormonal changes caused by long-term use of high dose pregabalin on testicular tissue: the role of p38 MAPK, oxidative stress and apoptosis. Mol Biol Rep 47, 8523–8533 (2020). https://doi.org/10.1007/s11033-020-05894-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05894-6

Keywords

Navigation