Skip to main content
Log in

Isolation and characterization of 20 polymorphic microsatellites loci for Xenocypris davidi based on high-throughput sequencing

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Xenocypris davidi is one of the most economically important freshwater fish in China. However, few molecular markers have been reported for this species, impeding in-depth population genetic, dispersal, and gene flow studies. In the present study, a batch of novel polymorphic microsatellites from the genome of X. davidi were isolated and characterized using high-throughput sequencing. A total of 20 microsatellite markers were isolated. Analysis of 33 individuals revealed an average of 7.35 alleles per locus, ranging from 3 to 18. The observed and expected heterozygosities ranged from 0.3 to 1 and from 0.426 to 0.93, respectively. Only one tested locus significantly deviated from Hardy–Weinberg equilibrium. 18 microsatellite loci were highly polymorphic (PIC > 0.5). These newly isolated microsatellite markers would be useful to study the population genetics and stock management of X. davidi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lan ZY, Li Q, Chen LX, Zeng LL, Zhao L (2008) Study on the individual fecundity of Xenocypris davidi bleeker in the Beijiang River. J South China Normal Univ 4:107–113 (in Chinese)

    Google Scholar 

  2. Liu Y (2013) The complete mitochondrial genome sequence of Xenocypris davidi (Bleeker). Mitochondrial DNA 25:374–376. https://doi.org/10.3109/19401736.2013.809429

    Article  CAS  PubMed  Google Scholar 

  3. Zhang H, Zhao LJ, Hu ZJ, Liu J, Liu QG (2015) Genetic variation analysis of Xenocypris davidi populations from Qiandao Lake and Yangtze River. J Shanghai Ocean Univ 24:12–19 (in Chinese)

    Google Scholar 

  4. Xiao MS, Xia HW, Ma YH (2012) Genetic variation of the Chinese longsnout catfish Leiocassis longirostris in the Yangtze River revealed using mitochondrial DNA cytochrome b sequences. Acta Ecol Sin 32:305–314. https://doi.org/10.1016/j.chnaes.2012.09.002

    Article  Google Scholar 

  5. Zeng C, Luo W, Liu XL, Wang WM, Gao ZX (2011) Isolation and characterization of 32 polymorphic microsatellites for Xenocypris microlepis. Conserv Genet Resour 3:479–481. https://doi.org/10.1007/s12686-011-9383-x

    Article  Google Scholar 

  6. González-Castellano I, Perina A, González-Tizón AM, Torrecilla Z, Martínez-Lage A (2018) Isolation and characterization of 21 polymorphic microsatellite loci for the rockpool shrimp Palaemon elegans using Illumina MiSeq sequencing. Sci Rep 8:17197. https://doi.org/10.1038/s41598-018-35408-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barbará T et al (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16:3759–3767. https://doi.org/10.1111/j.1365-294X.2007.03439.x

    Article  PubMed  Google Scholar 

  8. Yue GH, Balazs K, Laszlo O (2010) A new problem with cross-species amplification of microsatellites: generation of non-homologous products. Zool Res 31:131–140. https://doi.org/10.3724/SP.J.1141.2010.02131

    Article  CAS  Google Scholar 

  9. Guichoux E et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. https://doi.org/10.1111/j.1755-0998.2011.03014.x

    Article  CAS  PubMed  Google Scholar 

  10. Lance SL et al (2013) 32 species validation of a new Illumina paired-end approach for the development of microsatellites. PLoS ONE 8:e81853. https://doi.org/10.1371/journal.pone.0081853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heather R, Alan JJ, Stuart B (2016) Isolation and characterization of microsatellite DNA markers in the Deep-Sea amphipod Paralicella tenuipes by Illumina Miseq sequencing. J Hered 107:1–5. https://doi.org/10.1093/jhered/esw019

    Article  CAS  Google Scholar 

  12. Castoe TA et al (2012) Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE 7:e30953. https://doi.org/10.1371/journal.pone.0030953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duan CX, Li DD, Sun SL, Wang XM, Zhu ZD (2014) Rapid development of microsatellite markers for Callosobruchus chinensis using illumina paired-end sequencing. PLoS ONE 9:e95458. https://doi.org/10.1371/journal.pone.0095458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fang SB et al (2019) Genome survey and identification of polymorphic microsatellites provide genomic information and molecular markers for the red crab Charybdis feriatus (Linnaeus, 1758) (Decapoda: Brachyura: Portunidae). J Crustacean Biol. https://doi.org/10.1093/jcbiol/ruz074

    Article  Google Scholar 

  15. Guo JX, Zhang XM, Wang XY, Liu LQ, Gao TX (2020) Isolation and characterization of 25 polymorphic microsatellite markers of Sepiella japonica. Pak J Zool 52(1):1–4. https://doi.org/10.17582/journal.pjz/2020.52.1.sc3

    Article  CAS  Google Scholar 

  16. Pereira VA et al (2018) Identification and characterization of microsatellite loci in West Atlantic sea cucumber Holothuria grisea (Selenka 1867). J Genet 97:1363–1369. https://doi.org/10.1007/s12041-018-1022-9

    Article  CAS  Google Scholar 

  17. Rozen S, Skaletsky HJ (2000) Primer 3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  18. Marshall TC, Slate J, Kruuk LE, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. https://doi.org/10.1046/j.1365-294x.1998.00374.x

    Article  CAS  PubMed  Google Scholar 

  19. Raymond M, Rousset F (1995) GENEPOP (version 1.22): population genetics software for exact tests and ecumenicism. Heredity 86:248–249. https://doi.org/10.1046/j.1420-9101.1995.8030385.x

    Article  Google Scholar 

  20. Dongwon S, Md. Shamsul AB, Hasina S, Jung MH, Jun HL (2016) Genetic diversity analysis of south and east asian duck populations using highly polymorphic microsatellite markers. Asian Australas J Anim Sci 29:471–478. https://doi.org/10.5713/ajas.15.0915

    Article  CAS  Google Scholar 

  21. Botstein D, White RL, Skolnik M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331. https://doi.org/10.1016/0165-1161(81)90274-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Waples RS (2015) Testing for Hardy-Weinberg proportions: have we lost the plot? J Hered 106:1–19. https://doi.org/10.1093/jhered/esu062

    Article  PubMed  Google Scholar 

  23. Johnson MS, Black R (1984) The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. Mar Biol 79:295–302. https://doi.org/10.1007/BF00393261

    Article  Google Scholar 

  24. Dailianis T, Tsigenopoulos CS, Dounas C, Voultsiadou E (2011) Genetic diversity of the imperilled bath sponge Spongia officinalis Linnaeus, 1759 across the Mediterranean Sea: patterns of population differentiation and implications for taxonomy and conservation. Mol Ecol 20:3757–3772. https://doi.org/10.1111/j.1365-294x.2011.05222.x

    Article  CAS  PubMed  Google Scholar 

  25. Hare MP, Karl SA, Avise JC (1996) Anonymous nuclear DNA markers in the American oyster and their implications for the heterozygote deficiency phenomenon in marine bivalves. Mol Biol Evol 13:334–345. https://doi.org/10.1093/oxfordjournals.molbev.a025593

    Article  CAS  PubMed  Google Scholar 

  26. Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623. https://doi.org/10.1093/jhered/esn048

    Article  CAS  PubMed  Google Scholar 

  27. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631. https://doi.org/10.1093/molbev/msl191

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our experimental procedures complied with the current laws on animal welfare and research in China. The study was financed by the public welfare project of Zhejiang Province (LGN18C190001). We also thank the anonymous reviewers for their improvements in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julin Yuan or Zhimin Gu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All the procedures in this study were approved and carried out in accordance with the laboratory animal care protocol from the Animal welfare committee of Zhejiang institute of freshwater fisheries.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accession codes

Sequences containing the microsatellite loci were deposited in GenBank under Accession Numbers MK888833–MK888852.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, A., Yuan, J., Lian, Q. et al. Isolation and characterization of 20 polymorphic microsatellites loci for Xenocypris davidi based on high-throughput sequencing. Mol Biol Rep 47, 8305–8310 (2020). https://doi.org/10.1007/s11033-020-05834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05834-4

Keywords

Navigation