Skip to main content

Advertisement

Log in

Single-tube detection of nine bacterial antibiotic-resistance genes by a 2-dimensional multiplex qPCR assay based on fluorescence and melting temperature

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Simple, multiplex qPCR methods are advantages for rapid molecular diagnosis of multiple antibiotics-resistant genes simultaneously. However, the number of genes can be detected in a single reaction tube is often limited by the fluorescence channels of a real-time PCR instrument. In this study, we developed a simple 2-D multiplex qPCR method by combining the probe colors and amplicon Tm values to overcome the mechanical limit of the machine. The principle of the novel assay was validated by detection of nine bacterial antibiotic-resistance genes (KPC, NDM, VIM, OXA-48, GES, CIT, EBC, ACC and DHA) in a single reaction tube. This assay is highly sensitive within a range of 30–3000 copies per reaction. The simplicity, rapidity, high sensitivity and specificity, and low cost of the novel method make it a promising tool for developing clinical diagnostic kits for monitoring resistance and other genetic determinants of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Malhotra B, Swamy MA, Reddy PV, Kumar N, Tiwari JK (2016) Evaluation of custom multiplex real-time RT-PCR in comparison to fast-track diagnostics respiratory 21 pathogens kit for detection of multiple respiratory viruses. Virol J 13:91

    Article  Google Scholar 

  2. Jousset AB, Bernabeu S, Bonnin RA, Creton E, Cotellon G, Sauvadet A, Naas T, Dortet L (2018) Development and validation of a multiplex PCR assay for the detection of the five families of plasmid-encoded colistin resistance. Int J Antimicrob Agents 53(3):302–309

    Article  Google Scholar 

  3. Pabbaraju K, Gill K, Wong AA, Tipples GA, Hiebert J, Severini A, Fonseca K, Tellier R (2019) Simultaneous detection and differentiation between wild-type and vaccine measles viruses by a multiplex real-time reverse transcription-PCR assay. J Clin Microbiol. https://doi.org/10.1128/JCM.01828-18

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rebelo AR, Bortolaia V, Kjeldgaard JS, Pedersen SK, Leekitcharoenphon P, Hansen IM, Guerra B, Malorny B, Borowiak M, Hammerl JA, Battisti A, Franco A, Alba P, Perrin-Guyomard A, Granier SA, De Frutos Escobar C, Malhotra-Kumar S, Villa L, Carattoli A, Hendriksen RS (2018) Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill. https://doi.org/10.2807/1560-7917.ES.2018.23.6.17-00672

    Article  PubMed  PubMed Central  Google Scholar 

  5. Geyer CN, Hanson ND (2014) Multiplex high-resolution melting analysis as a diagnostic tool for detection of plasmid-mediated AmpC beta-lactamase genes. J Clin Microbiol 52:1262–1265

    Article  Google Scholar 

  6. Mostachio AK, van der Heidjen I, Rossi F, Levin AS, Costa SF (2009) Multiplex PCR for rapid detection of genes encoding oxacillinases and metallo-beta-lactamases in carbapenem-resistant Acinetobacter spp. J Med Microbiol 58:1522–1524

    Article  CAS  Google Scholar 

  7. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  CAS  Google Scholar 

  8. He Y-H, Ruan G-J, Hao H, Xue F, Ma Y-K, Zhu S-N, Zheng B (2019) Real-time PCR for the rapid detection of vanA, vanB and vanM genes. J Microbiol Immunol Infect. https://doi.org/10.1016/j.jmii.2019.02.002

    Article  PubMed  Google Scholar 

  9. Singh P, Pfeifer Y, Mustapha A (2016) Multiplex real-time PCR assay for the detection of extended-spectrum beta-lactamase and carbapenemase genes using melting curve analysis. J Microbiol Methods 124:72–78

    Article  CAS  Google Scholar 

  10. Wittwer CT, Herrmann MG, Gundry CN, Elenitoba-Johnson KS (2001) Real-time multiplex PCR assays. Methods 25:430–442

    Article  CAS  Google Scholar 

  11. Huang Q, Zheng L, Zhu Y, Zhang J, Wen H, Huang J, Niu J, Zhao X, Li Q (2011) Multicolor combinatorial probe coding for real-time PCR. PLoS ONE 6:e16033

    Article  CAS  Google Scholar 

  12. Li M, Palais RA, Zhou L, Wittwer CT (2017) Quantifying variant differences in DNA melting curves: effects of length, melting rate, and curve overlay. Anal Biochem 539:90–95

    Article  CAS  Google Scholar 

  13. Wan Z, Zhang Y, He Z, Liu J, Lan K, Hu Y, Zhang C (2016) A melting curve-based multiplex RT-qPCR assay for simultaneous detection of four human coronaviruses. Int J Mol Sci 17(11):880

    Article  Google Scholar 

  14. Elenitoba-johnson KSJ, Bohling SD, Wittwer CT, King TC (2001) Multiplex PCR by multicolor fluorimetry and fluorescence melting curve analysis. Nat Med 7:249–253

    Article  CAS  Google Scholar 

  15. Liao Y, Wang X, Sha C, Xia Z, Huang Q, Li Q (2013) Combination of fluorescence color and melting temperature as a two-dimensional label for homogeneous multiplex PCR detection. Nucleic Acids Res 41:e76

    Article  CAS  Google Scholar 

  16. Liu Z, Zhang J, Rao S, Sun L, Zhang J, Liu R, Zheng G, Ma X, Hou S, Zhuang X, Song X, Li Q (2015) Heptaplex PCR melting curve analysis for rapid detection of plasmid-mediated AmpC beta-lactamase genes. J Microbiol Methods 110:1–6

    Article  Google Scholar 

  17. Carlet J, Collignon P, Goldmann D, Goossens H, Gyssens IC, Harbarth S, Jarlier V, Levy SB, N’Doye B, Pittet D, Richtmann R, Seto WH, van der Meer JWM, Voss A (2011) Society’s failure to protect a precious resource antibiotics. Lancet 378:369–371

    Article  Google Scholar 

  18. Qiao M, Ying GG, Singer AC, Zhu YG (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172

    Article  CAS  Google Scholar 

  19. Huttner A, Harbarth S, Carlet J, Cosgrove S, Goossens H, Holmes A, Jarlier V, Voss A, Pittet D (2013) Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrob Resist Infect Control 2:1–13

    Article  Google Scholar 

  20. Potter RF, D’Souza AW, Dantas G (2016) The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resist Updat 29:30–46

    Article  Google Scholar 

  21. Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, Maor Y, Rahav G (2012) Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect 18:54–60

    Article  CAS  Google Scholar 

  22. van Duin D, Kaye KS, Neuner EA, Bonomo RA (2013) Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis 75:115–120

    Article  Google Scholar 

  23. Hrabak J, Chudackova E, Papagiannitsis CC (2014) Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect 20:839–853

    Article  CAS  Google Scholar 

  24. Peri AM, Doi Y, Potoski BA, Harris PNA, Paterson DL, Righi E (2019) Antimicrobial treatment challenges in the era of carbapenem resistance. Diagn Microbiol Infect Dis 94(4):413–425

    Article  CAS  Google Scholar 

  25. Logan LK, Weinstein RA (2017) The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 215:S28–S36

    Article  CAS  Google Scholar 

  26. Moland ES, Hong SG, Thomson KS, Larone DH, Hanson ND (2007) Klebsiella pneumoniae isolate producing at least eight different beta-lactamases, including AmpC and KPC beta-lactamases. Antimicrob Agents Chemother 51:800–801

    Article  CAS  Google Scholar 

  27. Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798

    Article  CAS  Google Scholar 

  28. Dortet L, Poirel L, Nordmann P (2014) Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. Biomed Res Int. https://doi.org/10.1155/2014/249856

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang R, Liu L, Zhou H, Chan E, Li J, Fang Y, YiLi, Liao K, Chen S (2017) Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine 19:98–106

    Article  Google Scholar 

  30. Pitout JDD, Peirano G, Kock MM, Strydom K-A (2020) The global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev 33:1–48

    Google Scholar 

  31. Jamborova I, Dolejska M, Vojtech J, Guenther S, Uricariu R, Drozdowska J, Papousek I, Pasekova K, Meissner W, Hordowski J, Cizek A, Literak I (2015) Plasmid-mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe. Appl Environ Microbiol 81:648–657

    Article  Google Scholar 

  32. Guofeng M, Er X (2016) Meta-analysis of the plasmid-mediated AmpC enzyme gene in Escherichia coli in China. Chin J Microecol 28:906–915

    Google Scholar 

  33. Chen L, Mediavilla JR, Endimiani A, Rosenthal ME, Zhao Y, Bonomo RA, Kreiswirth BN (2011) Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (bla KPC) variants. J Clin Microbiol 49:579–585

    Article  CAS  Google Scholar 

  34. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65:490–495

    Article  CAS  Google Scholar 

  35. Huang XZ, Cash DM, Chahine MA, Nikolich MP, Craft DW (2012) Development and validation of a multiplex TaqMan real-time PCR for rapid detection of genes encoding four types of class D carbapenemase in Acinetobacter baumannii. J Med Microbiol 61:1532–1537

    Article  CAS  Google Scholar 

  36. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281

    Article  CAS  Google Scholar 

  37. Pal C, Papp B, Lazar V (2015) Collateral sensitivity of antibiotic-resistant microbes. Trends Microbiol 23:401–407

    Article  CAS  Google Scholar 

  38. Nordmann P, Poirel L (2013) Strategies for identification of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 68:487–489

    Article  CAS  Google Scholar 

  39. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46

    Article  Google Scholar 

Download references

Funding

The work was supported by the grants from the National Science and Technology Major Project of China (2017ZX10103009-002), the “One Belt One Road” project (153831KYSB20170043) of the Chinese Academy of Sciences, and the 133 projects of Institut Pasteur of Shanghai, CAS.

Author information

Authors and Affiliations

Authors

Contributions

CZ and HD conceived and designed the study. YL carried out the experiments. ZW, PX and HD collected the clinical samples. CZ, YL, ZW, PX and HD analyzed data. CZ, YL and XJ interpreted the results. CZ and YL wrote the manuscript. XJ contributed to critical revision of the manuscript. CZ supervised the study.

Corresponding authors

Correspondence to Hong Du or Chiyu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3696.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, P., Wan, Z. et al. Single-tube detection of nine bacterial antibiotic-resistance genes by a 2-dimensional multiplex qPCR assay based on fluorescence and melting temperature. Mol Biol Rep 47, 7341–7348 (2020). https://doi.org/10.1007/s11033-020-05789-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05789-6

Keywords

Navigation