Skip to main content
Log in

Genetic variants in glutamate cysteine ligase confer protection against type 2 diabetes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oxidative stress contributes to the pathogenesis of type 2 diabetes (T2D). This study investigated whether single nucleotide polymorphisms (SNPs) at genes encoding glutamate cysteine ligase catalytic (rs12524494, rs17883901, rs606548, rs636933, rs648595, rs761142 at GCLC) and modifier (rs2301022, rs3827715, rs7517826, rs41303970 at GCLM) subunits are associated with susceptibility to type 2 diabetes. 2096 unrelated Russian subjects were enrolled for the study. Genotyping was done with the use of the MassArray System. Plasma levels of reactive oxygen species (ROS) and glutathione in the study subjects were analyzed by fluorometric and colorimetric assays, respectively.The present study found, for the first time, an association of SNP rs41303970 in the GCLM gene with a decreased risk of T2D (P = 0.034, Q = 0.17). Minor alleles such as rs12524494-G GCLC gene (P = 0.026, Q = 0.17) and rs3827715-C GCLM gene (P = 0.03, Q = 0.17) were also associated with reduced risk for T2D. Protective effects of variant alleles such as rs12524494-G at GCLC (P = 0.02, Q = 0.26) and rs41303970-A GCLM (P = 0.013, Q = 0.25) against the risk of T2D were seen solely in nonsmokers. As compared with healthy controls, diabetic patients had markedly increased levels of ROS and decreased levels of total GSH in plasma. Interestingly, fasting blood glucose level positively correlated with oxidized glutathione concentration (rs = 0.208, P = 0.01). Three SNPs rs17883901, rs636933, rs648595 at GCLC and one rs2301022 at GCLM were associated with decreased levels of ROS, while SNPs rs7517826, rs41303970 at GCLM were associated with increased levels of total GSH in plasma. Single nucleotide polymorphisms in genes encoding glutamate cysteine ligase subunits confer protection against type 2 diabetes and their effects are mediated through increased levels of glutathione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data and/or code availability

We are not allowed to share the raw data.

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  2. World Health Organization (2016) Global report on diabetes. World Health Organization, Geneva

    Google Scholar 

  3. Lawlor N, Khetan S, Ucar D, Stitzel ML (2017) Genomics of islet dysfunction and type 2 diabetes. Trends Genet 33(4):244–255. https://doi.org/10.1016/j.tig.2017.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bellou V, Belbasis L, Tzoulaki I, Evangelou E (2018) Risk factors for type 2 diabetes mellitus: an exposure-wide umbrella review of meta-analyses. PLoS ONE 13(3):e0194127. https://doi.org/10.1371/journal.pone.0194127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fuchsberger C, Flannick J, Teslovich TM et al (2016) The genetic architecture of type 2 diabetes. Nature 536:41–47. https://doi.org/10.1038/nature18642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S et al (2019) The genecards suite: from gene data mining to disease genome sequence analysis. Curr Protoc Bioinform 54(1):1–30. https://doi.org/10.1002/cpbi.5

    Article  Google Scholar 

  7. DeFronzo RA, Inzucchi S, Abdul-Ghani M, Nissen SE (2019) Pioglitazone: the forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diabetes Vasc Dis Res 16(2):133–143. https://doi.org/10.1177/1479164118825376

    Article  CAS  Google Scholar 

  8. Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet 389:2239–2251. https://doi.org/10.1016/S0140-6736(17)30058-2

    Article  CAS  PubMed  Google Scholar 

  9. Koska J, Saremi A, Howell S et al (2018) Advanced glycation end products, oxidation products, and incident cardiovascular events in patients with type 2 diabetes. Diabetes Care 41(3):570–576. https://doi.org/10.2337/dc17-1740

    Article  CAS  PubMed  Google Scholar 

  10. Ozdemır G, Ozden M, Maral H, Kuskay S, Cetınalp P, Tarkun I (2005) Malondialdehyde, glutathione, glutathione peroxidase and homocysteine levels in type 2 diabetic patients with and without microalbuminuria. Ann Clin Biochem 42(2):99–104. https://doi.org/10.1258/0004563053492838

    Article  PubMed  Google Scholar 

  11. Soliman GZA (2008) Blood lipid peroxidation (superoxide dismutase, malondialdehyde, glutathione) levels in Egyptian type 2 diabetic patients. Singapore Med J 49(2):129

    CAS  PubMed  Google Scholar 

  12. Al-Maskari MY, Waly MI, Ali A, Al-Shuaibi YS, Ouhtit A (2012) Folate and vitamin B12 deficiency and hyperhomocysteinemia promote oxidative stress in adult type 2 diabetes. Nutrition 28(7–8):e23–e26. https://doi.org/10.1016/j.nut.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  13. Lutchmansingh FK, Hsu JW, Bennett FI et al (2018) Glutathione metabolism in type 2 diabetes and its relationship with microvascular complications and glycemia. PLoS ONE 13(6):e0198626. https://doi.org/10.1371/journal.pone.0198626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spanidis Y, Mpesios A, Stagos D et al (2016) Assessment of the redox status in patients with metabolic syndrome and type 2 diabetes reveals great variations. Exp Ther Med 11(3):895–903. https://doi.org/10.3892/etm.2016.2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Flohé L (2018) Glutathione. CRC Press, Boca Raton

    Book  Google Scholar 

  16. Koide SI, Kugiyama K, Sugiyama S et al (2003) Association of polymorphism in glutamate-cysteine ligase catalytic subunit gene with coronary vasomotor dysfunction and myocardial infarction. J Am Coll Cardiol 41(4):539–545. https://doi.org/10.1016/S0735-1097(02)02866-8

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura SI, Kugiyama K, Sugiyama S et al (2002) Polymorphism in the 5′-flanking region of human glutamate-cysteine ligase modifier subunit gene is associated with myocardial infarction. Circulation 105(25):2968–2973. https://doi.org/10.1161/01.CIR.0000019739.66514.1E

    Article  CAS  PubMed  Google Scholar 

  18. Skvortsova L, Perfelyeva A, Khussainova E, Mansharipova A, Forman HJ, Djansugurova L (2017) Association of GCLM-588C/T and GCLC-129T/C promoter polymorphisms of genes coding the subunits of glutamate cysteine ligase with ischemic heart disease development in kazakhstan population. Dis Markers. https://doi.org/10.1155/2017/4209257

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pereira MM, Gelbart T, Ristoff E et al (2007) Chronic non-spherocytic hemolytic anemia associated with severe neurological disease due to γ-glutamylcysteine synthetase deficiency in a patient of Moroccan origin. Haematologica 92(11):e102–e105. https://doi.org/10.3324/haematol.11238

    Article  Google Scholar 

  20. Baum L, Chen X, Cheung WS et al (2007) Polymorphisms and vascular cognitive impairment after ischemic stroke. J Geriatr Psychiatry Neurol 20(2):93–99. https://doi.org/10.3324/haematol.11238

    Article  PubMed  Google Scholar 

  21. Do KQ, Bovet P, Cabungcal JH et al (2009) Redox dysregulation in schizophrenia: genetic susceptibility and pathophysiological mechanisms. Handb Neurochem Mol Neurobiol. https://doi.org/10.1007/978-0-387-30410-6_8

    Article  Google Scholar 

  22. Tosic M, Ott J, Barral S et al (2006) Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene. Am J Hum Genet 79(3):586–592. https://doi.org/10.1086/507566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Azarova I, Bushueva O, Konoplya A, Polonikov A (2018) Glutathione S-transferase genes and the risk of type 2 diabetes mellitus: role of sexual dimorphism, gene–gene and gene–smoking interactions in disease susceptibility. J Diabetes 10(5):398–407. https://doi.org/10.1111/1753-0407.12623

    Article  CAS  PubMed  Google Scholar 

  24. Ghaheri M, Kahrizi D, Yari K, Babaie A, Suthar RS, Kazemi E (2016) A comparative evaluation of four DNA extraction protocols from whole blood sample. Cell Mol Biol 62(3):120–124. https://doi.org/10.14715/cmb/2016.62.3.20

    Article  CAS  PubMed  Google Scholar 

  25. Shin S, Hudson R, Harrison C, Craven M, Keleş S (2019) atSNP Search: a web resource for statistically evaluating influence of human genetic variation on transcription factor binding. Bioinformatics 35(15):2657–2659. https://doi.org/10.1093/bioinformatics/bty1010

    Article  CAS  PubMed  Google Scholar 

  26. Pujato M, Kieken F, Skiles AA, Tapinos N, Fiser A (2014) Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes. Nucleic Acids Res 42(22):13500–13512. https://doi.org/10.1093/nar/gku1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J (2007) Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 298(22):2654–2664. https://doi.org/10.1001/jama.298.22.2654

    Article  CAS  PubMed  Google Scholar 

  28. Yeh HC, Duncan BB, Schmidt MI, Wang NY, Brancati FL (2010) Smoking, smoking cessation, and risk for type 2 diabetes mellitus: a cohort study. Ann Intern Med 152(1):10–17. https://doi.org/10.7326/0003-4819-152-1-201001050-00005

    Article  PubMed  PubMed Central  Google Scholar 

  29. Henriksen EJ, Diamond-Stanic MK, Marchionne EM (2011) Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med 51(5):993–999. https://doi.org/10.1016/j.freeradbiomed.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  30. Hurrle S, Hsu WH (2017) The etiology of oxidative stress in insulin resistance. Biomed J 40(5):257–262. https://doi.org/10.1016/j.bj.2017.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rehman K, Akash MSH (2017) Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem 118(11):3577–3585. https://doi.org/10.1002/jcb.26097

    Article  CAS  PubMed  Google Scholar 

  32. Gadjeva VS, Goycheva P, Nikolova G, Zheleva A (2017) Influence of glycemic control on some real-time biomarkers of free radical formation in type 2 diabetic patients: an EPR study. Adv Clin Exp Med 26(8):1237–1240. https://doi.org/10.17219/acem/68988

    Article  PubMed  Google Scholar 

  33. Berndt C, Lillig CH (2017) Glutathione, glutaredoxins, and iron. Antioxid Redox Signal 27(15):1235–1251. https://doi.org/10.1089/ars.2017.7132

    Article  CAS  PubMed  Google Scholar 

  34. Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ (2009) Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med 30(1–2):86–98. https://doi.org/10.1016/j.mam.2008.08.009

    Article  CAS  PubMed  Google Scholar 

  35. Roberts LD, Koulman A, Griffin JL (2014) Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol 2(1):65–75. https://doi.org/10.1016/S2213-8587(13)70143-8

    Article  CAS  PubMed  Google Scholar 

  36. Ruiz-Canela M, Guasch-Ferré M, Toledo E et al (2018) Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia 61(7):1560–1571. https://doi.org/10.1007/s00125-018-4611-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishizaki SS, Boyle AP (2017) Mining the unknown: assigning function to noncoding single nucleotide polymorphisms. Trends Genet 33(1):34–45. https://doi.org/10.1016/j.tig.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  38. Yang TT, Suk HY, Yang X et al (2006) Role of transcription factor NFAT in glucose and insulin homeostasis. Mol Cell Biol 26(20):7372–7387. https://doi.org/10.1128/MCB.00580-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jackerott M, Møldrup A, Thams P et al (2006) STAT5 activity in pancreatic beta-cells influences the severity of diabetes in animal models of type 1 and 2 diabetes. Diabetes 55(10):2705–2712. https://doi.org/10.2337/db06-0244

    Article  CAS  PubMed  Google Scholar 

  40. Gysemans C, Callewaert H, Moore F et al (2009) Interferon regulatory factor-1 is a key transcription factor in murine beta cells under immune attack. Diabetologia 52(11):2374–2384. https://doi.org/10.1007/s00125-009-1514-5

    Article  CAS  PubMed  Google Scholar 

  41. Vorrink SU, Domann FE (2014) Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node. Chem Biol Interact 218:82–88. https://doi.org/10.1016/j.cbi.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  42. García IA, Torres Demichelis V, Viale DL et al (2017) CREB3L1-mediated functional and structural adaptation of the secretory pathway in hormone-stimulated thyroid cells. J Cell Sci 130(24):4155–4167. https://doi.org/10.1242/jcs.211102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen F, Sha M, Wang Y et al (2016) Transcription factor Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in rodent models. Diabetologia 59(2):316–324. https://doi.org/10.1007/s00125-015-3805-3

    Article  CAS  PubMed  Google Scholar 

  44. Sans CL, Satterwhite DJ, Stoltzman CA, Breen KT, Ayer DE (2006) MondoA-Mlx heterodimers are candidate sensors of cellular energy status: mitochondrial localization and direct regulation of glycolysis. Mol Cell Biol 26(13):4863–4871. https://doi.org/10.1128/MCB.00657-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Riu E, Ferre T, Mas A, Hidalgo A, Franckhauser S, Bosch F (2002) Overexpression of c-myc in diabetic mice restores altered expression of the transcription factor genes that regulate liver metabolism. Biochem J 368(Pt 3):931–937. https://doi.org/10.1042/bj20020605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaneto H, Sharma A, Suzuma K et al (2002) Induction of c-Myc expression suppresses insulin gene transcription by inhibiting NeuroD/BETA2-mediated transcriptional activation. J Biol Chem 277(15):12998–13006. https://doi.org/10.1074/jbc.M111148200

    Article  CAS  PubMed  Google Scholar 

  47. Lee SH, Demeterco C, Geron I, Abrahamsson A, Levine F, Itkin-Ansari P (2008) Islet specific Wnt activation in human type II diabetes. Exp Diabetes Res 2008:728763. https://doi.org/10.1155/2008/728763

    Article  CAS  PubMed  Google Scholar 

  48. Jain SK, Micinski D (2013) Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun 437(1):7–11. https://doi.org/10.1016/j.bbrc.2013.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parsanathan R, Jain SK (2019) Glutathione deficiency induces epigenetic alterations of vitamin D metabolism genes in the livers of high-fat diet-fed obese mice. Sci Rep 9(1):14784. https://doi.org/10.1038/s41598-019-51377-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Santesmasses D, Mariotti M, Guigó R (2017) Computational identification of the selenocysteine tRNA (tRNASec) in genomes. PLoS Comput Biol 13(2):e1005383. https://doi.org/10.1371/journal.pcbi.1005383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Spijkerman AM, Nilsson PM, Ardanaz E et al (2014) Smoking and long-term risk of type 2 diabetes: the EPIC-InterAct study in European populations. Diabetes Care 37(12):3164–3171. https://doi.org/10.2337/dc14-1020

    Article  PubMed  Google Scholar 

  52. Pan A, Wang Y, Talaei M, Hu FB, Wu T (2015) Relation of active, passive, and quitting smoking with incident type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 3(12):958–967. https://doi.org/10.1016/S2213-8587(15)00316-2

    Article  PubMed  PubMed Central  Google Scholar 

  53. Eliasson B (2003) Cigarette smoking and diabetes. Prog Cardiovasc Dis 45(5):405–413. https://doi.org/10.1053/pcad.2003.00103

    Article  CAS  PubMed  Google Scholar 

  54. Agarwal R (2005) Smoking, oxidative stress and inflammation: impact on resting energy expenditure in diabetic nephropathy. BMC Nephrol 6(1):13. https://doi.org/10.1186/1471-2369-6-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen C, Tu YQ, Yang P et al (2018) Assessing the impact of cigarette smoking on β-cell function and risk for type 2 diabetes in a non-diabetic Chinese cohort. Am J Transl Res 10(7):2164

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dinardo MM, Sereika SM, Korytkowski M et al (2019) Current smoking: an independent predictor of elevated A1C in persons with type 2 diabetes. Diabetes Educ 45(2):146–154. https://doi.org/10.1177/0145721719829068

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the T2D patients, healthy volunteers and staff of the Kursk Emergency Hospital. The study was supported by Russian Science Foundation (№20–15-00227).

Funding

The study was supported by Russian Science Foundation (No. 20-15-00227).

Author information

Authors and Affiliations

Authors

Contributions

IA: laboratory investigations, database handling, statistical and bioinformatics analysis, interpretation and discussion of study results, writing and revising the paper; EK: laboratory investigations, database handling, data curation; VL: project administration, instructions of clinical, laboratory and instrumental examination of the study patients; AK: instructions of patients enrollment, consultancy; AP: the study conception and design, supervision of the study, interpretation and discussion of the study results, writing and revising the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Iuliia Azarova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Kursk State Medical University (Date: 12.12.2016/No.10).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 53 kb)

Supplementary file2 (XLSX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarova, I., Klyosova, E., Lazarenko, V. et al. Genetic variants in glutamate cysteine ligase confer protection against type 2 diabetes. Mol Biol Rep 47, 5793–5805 (2020). https://doi.org/10.1007/s11033-020-05647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05647-5

Keywords

Navigation