Skip to main content
Log in

The effects of hybridization and genome doubling in plant evolution via allopolyploidy

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Polyploidy is a pervasive and recurring phenomenon across the tree of life, which occurred at variable time scales, ecological amplitudes and cell types, and is especially prominent in the evolutionary histories of plants. Importantly, many of the world’s most important crops and noxious invasive weeds are recent polyploids. Polyploidy includes two major types, autopolyploidy, referring to doubling of a single species genome, and allopolyploidy referring to doubling of two or more merged genomes via biological hybridization of distinct but related species. The prevalence of both types of polyploidy implies that both genome doubling alone and doubling coupled with hybridization confer selective advantages over their diploid progenitors under specific circumstances. In cases of allopolyploidy, the two events, genome doubling and hybridization, have both advantages and disadvantages. Accumulated studies have established that, in allopolyploidy, some advantage(s) of doubling may compensate for the disadvantage(s) of hybridity and vice versa, although further study is required to validate generality of this trend. Some studies have also revealed a variety of non-Mendelian genetic and genomic consequences induced by doubling and hybridization separately or concertedly in nascent allopolyploidy; however, the significance of which to the immediate establishment and longer-term evolutionary success of allopolyploid species remain to be empirically demonstrated and ecologically investigated. This review aims to summarize recent advances in our understanding of the roles of hybridization and genome doubling, in separation and combination, in the evolution of allopolyploid genomes, as well as fruitful future research directions that are emerging from these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Guo W, Yang J, Sun XD et al (2016) Divergence in eco-physiological responses to drought mirrors the distinct distribution of chamerion angustifolium cytotypes in the himalaya-hengduan mountains region. Front Plant Sci 7:1329–1341

    PubMed  PubMed Central  Google Scholar 

  2. Wang S, Chen W, Yang C et al (2016) Comparative proteomic analysis reveals alterations in development and photosynthesis-related proteins in diploid and triploid rice. BMC Plant Biol 16(1):199

    PubMed  PubMed Central  Google Scholar 

  3. Levy AA, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130(4):1587–1593

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Treier UA, Broennimann O, Normand S et al (2009) Shift in cytotype frequency and niche space in the invasive plant centaurea maculosa. Ecology 90(5):1366–1377

    PubMed  Google Scholar 

  5. Feldman M, Levy AA (2012) Genome evolution due to Allopolyploidization in wheat. Genetics 192(3):763–774

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mayfield-Jones D, Washburn JD, Arias T et al (2013) Watching the grin fade: tracing the effects of polyploidy on different evolutionary time scales. Semin Cell Dev Biol 24(4):320–331

    PubMed  Google Scholar 

  7. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6(11):836–846

    CAS  PubMed  Google Scholar 

  8. Chen X, Ge X, Wang J et al (2015) Genome-wide DNA methylation profiling by modified reduced representation bisulfite sequencing in Brassica rapa suggests that epigenetic modifications play a key role in polyploid genome evolution. Front Plant Sci 6:836. https://doi.org/10.3389/fpls.2015.00836

    Article  PubMed  PubMed Central  Google Scholar 

  9. Del Pozo JC, Ramirez-Parra E (2015) Whole genome duplications in plants: an overview from Arabidopsis. J Exp Bot 66(22):6991–7003

    PubMed  Google Scholar 

  10. Alix K, Gérard PR, Schwarzacher T et al (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120(2):183–194. https://doi.org/10.1093/aob/mcx079

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bourke PM, Voorrips RE, Visser RGF et al (2018) Tools for genetic studies in experimental populations of polyploids. Front Plant Sci 9:513. https://doi.org/10.3389/fpls.2018.00513

    Article  PubMed  PubMed Central  Google Scholar 

  12. Martin C, Viruel MA, Lora J et al (2019) Polyploidy in fruit tree crops of the genus Annona (Annonaceae). Front Plant Sci. https://doi.org/10.3389/fpls.2019.00099

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pikaard CS (2001) Genomic change and gene silencing in polyploids. Trend Genet 17(12):675–677

    CAS  Google Scholar 

  14. Te Beest M, Le Roux JJ, Richardson DM et al (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109(1):19–45

    PubMed  Google Scholar 

  15. Chen ZJ, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28(3):240–252

    PubMed  Google Scholar 

  16. Song K, Lu P, Tang K et al (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92(17):7719–7723

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu B, Wendel J (2002) Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics 3(6):489–505

    CAS  Google Scholar 

  18. Comai L, Madlung A, Josefsson C et al (2003) Do the different parental ‘heteromes’ cause genomic shock in newly formed allopolyploids. Philos Trans R Soc Lond B  358(1434):1149–1155

    CAS  Google Scholar 

  19. Dong YZ, Liu ZL, Shan XH et al (2005) Allopolyploidy in wheat induces rapid and heritable alterations in DNA methylation patterns of cellular genes and mobile elements. Genetika 41(8):1089–1095

    CAS  PubMed  Google Scholar 

  20. Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14(4):1163–1175

    CAS  PubMed  Google Scholar 

  21. Hegarty MJ, Barker GL, Wilson ID et al (2006) Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol 16(16):1652–1659

    CAS  PubMed  Google Scholar 

  22. Hegarty MJ, Barker GL, Brennan AC et al (2008) Changes to gene expression associated with hybrid speciation in plants: further insights from transcriptomic studies in Senecio. Philos Trans R Soc Lond B  363:3055–3069

    CAS  Google Scholar 

  23. Madlung A, Wendel JF (2013) Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet Genome Res 140(2–4):270–285

    CAS  PubMed  Google Scholar 

  24. Soltis PS (2013) Hybridization, speciation and novelty. J Evol Biol 26(2):291–293

    CAS  PubMed  Google Scholar 

  25. Song QX, Chen ZJ (2015) Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol 24:101–109

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yaakov B, Kashkush K (2011) Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids. Int J Plant Genomics 2011:569826. https://doi.org/10.1155/2011/569826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Senerchia N, Felber F, Parisod C (2014) Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol 202(3):975–985

    CAS  PubMed  Google Scholar 

  28. Zhang H, Bian Y, Gou X et al (2013) Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci USA 110(9):3447–3452

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Soltis DE, Visger CJ, Marchant DB et al (2016) Polyploidy: pitfalls and paths to a paradigm. Am J Bot 103(7):1146–1166

    PubMed  Google Scholar 

  30. Rieseberg LH (2001) Polyploid evolution: keeping the peace at genomic reunions. Curr Biol 11(22):R925–R928

    CAS  PubMed  Google Scholar 

  31. Soltis DE, Segovia-Salcedo MC, Jordon-Thaden I et al (2014) Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytol 202:1105–1117

    PubMed  Google Scholar 

  32. Arrigo N, Barker MS (2012) Rarely successful polyploids and their legacy in plant genomes. Curr Opin Plant Biol 15(2):140–146

    CAS  PubMed  Google Scholar 

  33. Mayrose I, Zhan SH, Rothfels CJ et al (2011) Recently formed polyploid plants diversify at lower rates. Science 333(6047):1257

    CAS  PubMed  Google Scholar 

  34. Ghalambor CK, Mckay JK, Carroll SPet al (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407

    Google Scholar 

  35. Rieseberg L, Noyes RD (1998) Genetic map-based studies of reticulate evolution in plants. Trend Plant Sci 3(7):254–259

    Google Scholar 

  36. Birchler JA, Riddle NC, Auger DL et al (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21(4):219–226

    CAS  PubMed  Google Scholar 

  37. Wang YM, Dong ZY, Zhang ZJ et al (2005) Extensive de novo genomic variation in rice induced by introgression from wild rice (Zizania latifolia Griseb.). Genetics 170(4):1945–1956

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shaked H, Kashkush K, Ozkan H et al (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13(8):1749–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang J, Tian L, Lee HS et al (2006) Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 172(1):507–517

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao Q, Zou J, Meng J et al (2013) Tracing the transcriptomic changes in synthetic trigenomic allohexaploids of Brassica using an RNA-Seq approach. PLoS ONE 8(7):e68883

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shimizu-Inatsugi R, Terada A, Hirose K et al (2017) Plant adaptive radiation mediated by polyploid plasticity in transcriptomes. Mol Ecol 26(1):193–207

    CAS  PubMed  Google Scholar 

  42. Bennett RJ, Uhl MA, Miller MG et al (2003) Identification and characterization of a Candida albicans mating pheromone. Mol Cell Biol 23(22):8189–8201

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142(4):1349–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Galitski T, Saldanha AJ, Styles CA et al (1999) Ploidy regulation of gene expression. Science 285(5425):251–254

    CAS  PubMed  Google Scholar 

  45. Albertin W, Brabant P, Catrice O et al (2005) Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. Proteomics 5(8):2131–2139

    CAS  PubMed  Google Scholar 

  46. Hollister JD, Arnold BJ, Svedin E et al (2012) Genetic adaptation associated with genome- doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 8(12):e1003093. https://doi.org/10.1371/journal.pgen.1003093

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhang J, Liu Y, Xia EH et al (2015) Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc Natl Acad Sci USA 112(50):E7022–E7029. https://doi.org/10.1073/pnas

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hou J, Shi X, Chen C et al (2018) Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. Proc Natl Acad Sci USA 115(48):E11321–E11330. https://doi.org/10.1073/pnas.1807796115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Doyle JJ, Coate JE (2019) Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. Int J Plant Sci 180(1):1–52. https://doi.org/10.1086/700636

    Article  Google Scholar 

  50. Visger CJ, Wong GK, Zhang Y et al (2019) Divergent gene expression levels between diploid and autotetraploid Tolmiea relative to the total transcriptome, the cell, and biomass. Am J Bot 106:280–291

    CAS  PubMed  Google Scholar 

  51. Oustric J, Quilichini Y, Morillon R et al (2019) Tetraploid citrus seedlings subjected to long-term nutrient deficiency are less affected at the ultrastructural, physiological and biochemical levels than diploid ones. Plant Physiol Biochem 135:372–384

    CAS  PubMed  Google Scholar 

  52. Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    CAS  PubMed  Google Scholar 

  53. Liu B, Wendel JF (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29(3):365–379

    CAS  PubMed  Google Scholar 

  54. Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14(9):348–352

    CAS  PubMed  Google Scholar 

  55. Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97(13):7051–7057

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang J, Tian L, Madlung A et al (2004) Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167(4):1961–1973

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Monnahan P, Kolář F, Baduel P et al (2019) Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol 3(3):457–468

    PubMed  Google Scholar 

  58. Cavalier-Smith T (1978) Nuclear volume control by nucleo skeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247–278

    CAS  PubMed  Google Scholar 

  59. Bennett MD, Leitch IJ (2005) Genome size evolution in plants. In: Gregory TR (ed) The evolution of the genome. Elsevier Academic Press, Amsterdam, pp 89–162

    Google Scholar 

  60. Gregory TR (2005) The evolution of the genome. Elsevier Academic Press, Amsterdam

    Google Scholar 

  61. Hessen DO, Jeyasingh PD, Neiman M et al (2010) Genome streamlining and the elemental costs of growth. Trends Ecol Evol 25(2):75–80

    PubMed  Google Scholar 

  62. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16(7):1679–1691

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol 18(10):435–444

    Google Scholar 

  64. Gaeta RT, Pires JC, Iniguez-Luy F et al (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19(11):3403–3417

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun Y, Wu Y, Yang C et al (2017) Segmental allotetraploidy generates extensive homoeologous expression rewiring and phenotypic diversityatthe populationlevel in rice. Mol Ecol 26:5451–5466

    CAS  PubMed  Google Scholar 

  66. Kagawa K, Takimoto G (2018) Hybridization can promote adaptive radiation by means of transgressive segregation. Ecol Lett 21:264–274

    PubMed  Google Scholar 

  67. Abbott R, Albach D, Ansell S et al (2013) Hybridization and speciation. J Evol Biol 26(2):229–246

    CAS  PubMed  Google Scholar 

  68. Weiss-Schneeweiss H, Emadzade K, Jang T-S et al (2013) Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res 140(2–4):137–150

    CAS  PubMed  Google Scholar 

  69. Buggs RJ, Zhang L, Miles N et al (2011) Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid. Curr Biol 21(7):551–556

    CAS  PubMed  Google Scholar 

  70. Hegarty MJ, Abbott RJ, Hiscock SJ (2012) Allopolyploid speciation in action: the origins and evolution of senecio cambrensis. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Heidelberg, pp 245–270

    Google Scholar 

  71. Oates KM, Ranney TG, Touchell DH (2012) Influence of induced polyploidy on fertility and morphology of Rudbeckia species and hybrids. Hort Sci 47:1217–1221

    Google Scholar 

  72. Chaudhary B, Flagel L, Stupar RM et al (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 182:503–517

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Albertin W, Balliau T, Brabant P et al (2006) Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics 173(2):1101–1113

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131(3):452–462

    CAS  PubMed  Google Scholar 

  75. Ainouche ML, Fortune PM, Salmon A et al (2009) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invasions 11(5):1159–1173

    Google Scholar 

  76. Parisod C, Salmon A, Zerjal T et al (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184(4):1003–1015

    CAS  PubMed  Google Scholar 

  77. Hegarty MJ, Batstone T, Barker GL et al (2011) Nonadditive changes to cytosine methylation as a consequence of hybridization and genome duplication in Senecio (Asteraceae). Mol Ecol 20(1):105–113

    CAS  PubMed  Google Scholar 

  78. Flagel L, Udall J, Nettleton D et al (2008) Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol 6:16. https://doi.org/10.1186/1741-7007-6-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yoo MJ, Szadkowski E, Wendel JF (2013) Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 110:171–180

    CAS  PubMed  Google Scholar 

  80. Xu C, Bai Y, Lin X et al (2014) Genome-wide disruption of gene expression in allopolyploids but not hybrids of rice subspecies. Mol Biol Evol 31(5):1066–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Li N, Xu C, Zhang A et al (2019) DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. New Phytol. https://doi.org/10.1111/nph.15820

    Article  PubMed  PubMed Central  Google Scholar 

  82. Li LF, Liu B (2019) Recent advances of plant polyploidy and polyploidy genome evolution. Sci SinVitae 49:1–11 ((in Chinese))

    Google Scholar 

  83. Doyle JJ, Flagel LE, Paterson AH et al (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    CAS  PubMed  Google Scholar 

  84. Feldman M, Liu B, Segal G et al (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147(3):1381–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu B, Vega JM, Feldman M (1998) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. ΙΙ. Changes in low-copy coding DNA sequences. Genome 41(4):535–542

    CAS  PubMed  Google Scholar 

  86. Liu B, Vega JM, Segal G (1998) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41(4):272–277

    CAS  Google Scholar 

  87. Eilam T, Anikster Y, Millet E et al (2009) Genome size in natural and synthetic autopolyploids and in a natural segmental allopolyploid of several Triticeae species. Genome 52(3):275–285

    CAS  PubMed  Google Scholar 

  88. Bian Y, Yang C, Ou X et al (2018) Meiotic chromosome stability of a newly formed allohexaploid wheat is facilitated by selection under abiotic stress as a spandrel. New Phytol 220:262–277

    CAS  PubMed  Google Scholar 

  89. Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homologous recombination in four mapping populations of Brassica napus L. Genetics 169(2):967–979

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang H, Bian Y, Gou X et al (2013) Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. Proc Natl Acad Sci USA 110:19466–19471

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gou X, Bian Y, Zhang A et al (2018) Transgenerationally precipitated meiotic chromosome instability fuels rapid karyotypic evolution and phenotypic diversity in an artificially constructed allotetraploid wheat(AADD). Mol Biol Evol 35(5):1078–1091

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chester M, Gallagher JP, Symonds VV et al (2012) Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci USA 109(4):1176–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Verhoeven KJ, Jansen JJ, van Dijk PJ et al (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185(4):1108–1118

    CAS  PubMed  Google Scholar 

  94. Zhao N, Zhu B, Li M et al (2011) Extensive and heritable epigenetic remodeling and genetic stability accompany Allohexaploidization of wheat. Genetics 188(3):499–509

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Josefsson C, Dilkes B, Comai L (2006) Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol 16(13):1322–1328

    CAS  PubMed  Google Scholar 

  96. Kenan-Eichler M, Leshkowitz D, Tal L et al (2011) Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics 188(2):263–272

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Alonso C, Balao F, Bazaga P et al (2016) Epigenetic contribution to successful polyploidizations: variation in global cytosine methylation along an extensive ploidy series in dianthus broteri (Caryophyllaceae). New Phytol. https://doi.org/10.1111/nph.14138

    Article  PubMed  Google Scholar 

  98. Li AL, Geng SF, Zhang LQ et al (2015) Making the bread: insights from newly synthesized allohexaploid wheat. Mol Plant 8(6):847–859

    CAS  PubMed  Google Scholar 

  99. Shen Y, Sun S, Hua S et al (2017) Analysis of transcriptional and epigenetic changes in hybrid vigor of allopolyploid Brassica napus uncovers key roles for small RNAs. Plant J 91:874–893

    CAS  PubMed  Google Scholar 

  100. Lloyd A, Blary A, Charif D et al (2018) Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an allopolyploid crop. New Phytol 217:367–377

    CAS  PubMed  Google Scholar 

  101. Cronn RC, Small RL, Wendel JF (1999) Duplicated genes evolve independently after polyploid formation in cotton. Proc Natl Acad Sci USA 96(25):14406–14411

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Combes MC, Cenci A, Baraille H et al (2012) Homeologous gene expression in response to growing temperature in a recent allopolyploid (Coffea arabica L.). J Hered 103(1):36–46

    CAS  PubMed  Google Scholar 

  103. Shi T, Huang H, Barker MS (2010) Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. Ann Bot 106(3):497–504

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31830006, 31570412, 31670427) and Natural Science Foundation of Changchun Normal University (2017, No. 012).

Author information

Authors and Affiliations

Authors

Contributions

TQ, ZYL and BL conceived the manuscript and revised it.

Corresponding author

Correspondence to Bao Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

For this type of study, informed consent is not required.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, T., Liu, Z. & Liu, B. The effects of hybridization and genome doubling in plant evolution via allopolyploidy. Mol Biol Rep 47, 5549–5558 (2020). https://doi.org/10.1007/s11033-020-05597-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05597-y

Keywords

Navigation