Skip to main content

Advertisement

Log in

Developing novel microsatellite markers by NGS technology for Rhopilema nomadica, an invasive jellyfish

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Twelve microsatellite loci, obtained by whole genome sequencing approach, were developed and validated for the rhizostomatid jellyfish Rhopilema nomadica, the most pernicious invasive species in the Mediterranean Sea. A sample of 40 specimens collected at six locations along the Mediterranean coast of Israel were genotyped and all loci presented suitable outcomes to population genetic studies, revealing 5–19 alleles/locus with clean and reproducible amplifications. Observed and expected heterozygosity ranged 0.0.353 to 0.971 and 0.335 to 0.870, respectively, and the fixation index (inbreeding coefficient) and the polymorphic information content (PIC) ranged between  − 0.190 and 0.240 and 0.32 to 0.858, respectively. The new set of microsatellite loci will be used to study long-term changes in the population genetic parameters of this invasive species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Stiasny G (1938) Die Scyphomedusen des Roten Meeres. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen. Afdeling Natuurkunde 37:1–35

    Google Scholar 

  2. Galil B, Spanier E, Ferguson W (1990) The Scyphomedusae of the Mediterranean coast of Israel, including two Lessepsian migrants new to the Mediterranean. Zool Meded 64:95–105

    Google Scholar 

  3. Galil BS (2007) Seeing Red: Alien species along the Mediterranean coast of Israel. Aquat Invasions 2:281–312. https://doi.org/10.3391/ai.2007.2.4.2

    Article  Google Scholar 

  4. Madkour FF, Hanafy MH, Zaghloul WS (2018) Record of aggregation of alien tropical schyphozoan Rhopilema nomadica Galil, 1990 in the Mediterranean Coast of Egypt. Int Mar Sci J 1:1–11. https://doi.org/10.14302/issn.2643

    Article  Google Scholar 

  5. Deval MC, Olguner MT (2019) The Spring Outbreak of the Invasive Scyphomedusa Rhopilema nomadica Galil, Spannier & Ferguson, 1990 in the Antalya Bay, the eastern Mediterranean. Nat Eng Sci 4:247–252. https://doi.org/10.28978/nesciences.646209

    Article  Google Scholar 

  6. Galil B (2018) Poisonous and venomous: marine alien species in the Mediterranean Sea and human health. In: Mazza G, Tricarico E (eds) Invasive species and human health. CAB International, Wallingford, pp 1–15. https://doi.org/10.1079/9781786390981.0001

    Chapter  Google Scholar 

  7. Edelist D, Guy-Haim T, Kuplik Z, Zuckerman N, Nemoy P, Angel DL (2020) Phenological shift in swarming patterns of Rhopilema nomadica in the Eastern Mediterranean Sea. J Plankton Res. https://doi.org/10.1093/plankt/fbaa008

    Article  Google Scholar 

  8. Galil BS, Zenetos A (2002) A sea change—exotics in the Eastern Mediterranean. In: Leppäkoski E, Olenin S, Golasch S (eds) Invasive aquatic species of Europe: distributions, impacts and management. Kluwer Academic Publishers, Dordrecht, pp 325–336. https://doi.org/10.1007/978-94-015-9956-6_33

    Chapter  Google Scholar 

  9. Zeidler W, Douek J, Rinkevich B, Gevili R, Goren M, Galil BS (2018) Validation and redescription of the hyperiidean amphipod Brachyscelus rapacoides Stephensen, 1925 (Crustacea: Amphipoda: Hyperiidea: Brachyscelidae), a new record of association with the scyphozoan jellyfish Rhopilema nomadica Galil, 1990 (Scyphozoa: Rhizostomeae: Rhizostomatidae) in the Mediterranean Sea. Zootaxa 4471:523–534. https://doi.org/10.11646/zootaxa.4471.3.5

    Article  PubMed  Google Scholar 

  10. Galil BS, Marchini A, Occhipinti-Ambrogi A, Ojaveer H (2017) The enlargement of the Suez Canal—Erythraean introductions and management challenges. Manag Biol Invasions 8:141–152. https://doi.org/10.3391/mbi.2017.8.2.02

    Article  Google Scholar 

  11. Douek J, Barki Y, Gateo D, Rinkevich B (2002) Possible cryptic speciation within the sea anemone Actinia equina complex detected by AFLP markers. Zool J Linn Soc 136:315–320. https://doi.org/10.1046/j.1096-3642.2002.00034.x

    Article  Google Scholar 

  12. Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeats arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94. https://doi.org/10.1111/j.1471-8286.2007.01884.x

    Article  CAS  PubMed  Google Scholar 

  13. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. https://doi.org/10.1038/72708

    Article  CAS  PubMed  Google Scholar 

  14. Smouse PE, Banks SC, Peakall R (2017) Converting quadratic entropy to diversity: Both animals and alleles are diverse, but some are more diverse than others. PLoS ONE 12:1–19. https://doi.org/10.1371/journal.pone.0185499

    Article  CAS  Google Scholar 

  15. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICROCHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  17. Raymond M, Rousset F (1995) GENEPOP (Version 12): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  18. Rousset F (2008) Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  19. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  20. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  21. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Gen 32:314–331

    CAS  Google Scholar 

  22. Zhu L, Yang AA, Zhou CY, Yang H, Luo XR, Chen SQ, Zhuang ZM (2015) Characterization of 15 polymorphic microsatellite loci for the jellyfish Rhopilema esculentum. Conserv Genet Resour 7:551–556. https://doi.org/10.1007/s12686-015-0422-x

    Article  Google Scholar 

  23. Tian T, Chen Z, Wang M, Hu Y, Wang W (2017) Inbreeding and genetic diversity analysis in a hatchery release population and clones of Rhopilema esculentum based on microsatellite markers. Chin J Oceanol Limn 35:580–586. https://doi.org/10.1007/s00343-017-5333-0

    Article  CAS  Google Scholar 

  24. Ojeda AP, Hilsdorf AWS, Leite AC et al (2016) Microsatellite records for volume 8, issue 4. Conserv Genet Resour 8:587–594. https://doi.org/10.1007/s12686-016-0635-7

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to O. Klein for his photograph of a Rhopilema swarm. We thank Rinkevich’s and Lubinevsky’s labs members for the help in jellyfish collections. This study was supported by the Israeli Ministry of Energy, contract Nos.: 211–17-023 and-218–17-009

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Douek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douek, J., Harbuzov, Z., Galil, B.S. et al. Developing novel microsatellite markers by NGS technology for Rhopilema nomadica, an invasive jellyfish. Mol Biol Rep 47, 4821–4825 (2020). https://doi.org/10.1007/s11033-020-05533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05533-0

Keywords

Navigation