Skip to main content
Log in

The importance of the S-layer on the adhesion and aggregation ability of Lactic acid bacteria

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

S-layer proteins in Lactic acid bacteria are not the only cell surface structures used for aggregation, but also plays significant role for intestinal tissue adhesion along with some other functional elements. In addition, it was determined that the properties of S-layer proteins differs not only between species but also the strains which belong to same species. In this work, presence and some functions of S-layer in lactic acid bacteria were determined, its effect on resistance to gastrointestinal enzymes, aggregation and adhesion ability were investigated as well. For this purpose S-layers of microorganisms were removed by 5 M LiCl treatment and size of the proteins were determined by SDS-PAGE analysis. The removal of S-layer proteins caused a change in the resistance of microorganisms to GIS enzymes. After the S-layer removal, two strains considerably lost their resistance to GIS enzymes. The strains mostly lost their aggregation ability in the absence of S-layer. The results showed that S-layer proteins are not the only structures involved in aggregation processes but, is a major mediator in Lactobacilli. Removal of S-layer had no effect on adhesion ability of W. cibaria DA28, the effect on L. casei DA4, L. coryniformis DA263 and L. plantarum DA140 was moderate, but the effect was high on L. plantarum DA100. The study showed that S-layer proteins play limited protection against GIS enzymes. In addition, absence of S-layer adversely affected aggregation and adhesion ability of strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vesterlund S, Paltta J, Karp M, Ouwehand A (2005) Adhesion of bacteria to resected human colonic tissue: quantitative analysis of bacterial adhesion and viability. Res Microbiol 156:238–244. https://doi.org/10.1016/j.resmic.2004.08.012

    Article  PubMed  Google Scholar 

  2. Yadav AK, Tyagi A, Kaushik JK, Saklani AC, Grover S, Batish VK (2013) Role of surface layer collagen binding protein from indigenous Lactobacillus plantarum 91 in adhesion and its anti-adhesion potential against gut pathogen. Microbiol Res 168:639–645. https://doi.org/10.1016/j.micres.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  3. Alp D (2018) Investigation of some probiotic properties of lactic acid bacteria isolated from natural sources and determination of their ability to prevent pathogenic attachment in intestine model. Dissertation, Suleyman Demirel Universty

  4. Harty DWS, Patrikakis M, Knox KW (1993) Identification of Lactobacillus strains isolated from patients with infective endocarditis and comparison of their surface-associated properties with those of other strains of the same species. Microbiol Ecolog Health Dis 6:191–201. https://doi.org/10.15739/IJAPR.030

    Article  Google Scholar 

  5. McGrady JA, Butcher WG, Beighton D, Switalski LM (1995) Specific and charge interactions mediate collagen recognition by oral Lactobacilli. J Dent Res 74:649–657

    Article  CAS  Google Scholar 

  6. Mukai T, Toba T, Ohori H (1996) Collagen binding of Bifidobacterium adolescentis. Curr Microbiol 34:326–331

    Article  Google Scholar 

  7. Sara M, Sleytr UB (2000) S-layer proteins. J Bacteriol 182(4):859–868

    Article  CAS  Google Scholar 

  8. Frece J, Kos B, Svetec IK, Zgaga Z, Mrsa V, Suskovic J (2005) Importance of s layer proteins in probiotic activity of lactobacillus acidophilus M92. J Appl Microbiol 98:285–292. https://doi.org/10.1111/j.1365-2672.2004.02473.x

    Article  CAS  PubMed  Google Scholar 

  9. Johnson B, Selle K, O’Flaherty S, Goh YJ, Klaenhammer T (2013) Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM. Microbiology 159:2269–2282. https://doi.org/10.1099/mic.0.070755-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Polak-Berecka M, Wasko A, Paduch R (2014) The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie Leeuwenhoek 106:751–762. https://doi.org/10.1007/S10482-014-0245-X

    Article  CAS  PubMed  Google Scholar 

  11. Mobili P, Gerbino E, Tymczyszyn EE, Gómez-Zavaglia A (2010) S-layers in lactobacilli: structural characteristics and putative role in surface and probiotic properties of whole bacteria. Appl Microbiol Microb Biotechnol 22:1224–1234

    Google Scholar 

  12. Hynönen U, Palva A (2013) Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol. 97:5225–5243. https://doi.org/10.1007/s00253-013-4962-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang H, Wei CX, Min L, Zhu LY (2018) Good or bad: gut bacteria in human health and diseases. Biotechnol Biotechnol Equip. https://doi.org/10.3389/fmicb.2018.02858

    Article  Google Scholar 

  14. Goh JY, Klaenhammer TR (2010) Functional roles of aggregation-promoting- like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 76(15):5005–5012. https://doi.org/10.1128/AEM.00030-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ossowski I, Satokari R, Reunanen J, Lebeer S, Keersmaecker S, Vanderleyden J, Vos WM, Palva A (2011) Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 77(13):4465–4472. https://doi.org/10.1128/AEM.01958-09

    Article  CAS  Google Scholar 

  16. Denkova R, Strinska H, Denkova Z (2014) Study on the adhesion of lactobacillus plantarum strains with probıotic properties to MDCK. J Fac Food Eng 13(3):214–217

    Google Scholar 

  17. Wasko A, Polak-Berecka M, Kuzdralinski A, Skrzypek T (2014) Variability of S-layer proteins in Lactobacillus helveticus strains. Anaerobe 25:53–60. https://doi.org/10.1016/j.anaerobe.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  18. Lortal S, Heıjenoorkta J, Ruber R, Sleytr UB (1992) Slayer Of Lactobacillus helveticus ATCC 12046: isolation, chemical characterization and re-formation after extraction with lithium chloride. J General Microbiol 138:611–618

    Article  CAS  Google Scholar 

  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  20. Maragkoudakis PA, Zoumpopoulou G, Miaris C (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199

    Article  CAS  Google Scholar 

  21. Tokatlı M, Gülgör G, Elmacı S, İşleyen N, Özçelik F (2015) In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. BioMed Res Int 215:1–8: https://doi.org/10.1155/2015/315819

    Article  CAS  Google Scholar 

  22. Kawther ELS, Tawfik NF, Dabiza MA, Sharaf OM, Effat BA (2010) In vitro assessment of gastrointestinal viability of potentially probiotic Lactobacilli. J American Sci 6:11–15

    Google Scholar 

  23. Eryılmaz F (2011) Identifıcation of potential probiotic properties of some lactic acid bacterial genera which is isolated from vaginal secretion. Dissertation University Of Ankara

  24. Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S (2003) Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 94:981–987. https://doi.org/10.1046/j.1365-2672.2003.01915.x

    Article  CAS  PubMed  Google Scholar 

  25. Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226:1065–1073. https://doi.org/10.1007/s00217-007-0632-x

    Article  CAS  Google Scholar 

  26. Evans EM, Wrigglesworth JM, Burdett K, Pover WFR (1971) Studies on epithelial cells isolated from guinea pig small intestine. J Cell Biol 51:452–464

    Article  CAS  Google Scholar 

  27. Sellwood R, Gibbons RA, Jones GW (1975) Adhesion of enteropathogenic Escherichia coli to pig intestinal brush borders: the existence of two pig phenotypes. J Med Microbiol 8:405–411

    Article  CAS  Google Scholar 

  28. Ouwehand AC, Salminen S (2003) In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microb Ecol Health Dis 15:175–184. https://doi.org/10.1080/08910600310019886

    Article  Google Scholar 

  29. Kučan M, Gobin I, Merkov K, Jurčıć-Momčılovıć D, Frece J (2012) Testing the adhesion and colonization ability of Lactobacillus plantarum strain S1 to the mice intestinal epithelium. Int J Sanitary 6:25–30

    Google Scholar 

  30. Kang MS, Piao M, Shin BA, Lee HC, Oh JS (2006) Adhesion of Weissella cibaria to the epithelial cells and factors affecting its adhesion. J Bacteriol Virol 36:151–157

    Article  CAS  Google Scholar 

  31. Schachtsiek M, Hammes WP, Hertel C (2004) Characterization Of Lactobacillus coryniformis DSM 20001T surface protein cpf mediating coaggregation with and aggregation among pathogens. Appl Environ Microbiol 70:7078–7085

    Article  CAS  Google Scholar 

  32. Ristl R, Steiner K, Zarschler K, Zayni S, Messner P, Sch¨affer C (2011) The S-Layer Glycome-Adding to the Sugar Coat of Bacteria. Int J Microbiol 16 pages. doi: 10.1155/2011/127870.

    Article  Google Scholar 

  33. Kang MS, Na HS, Oh JS (2005) Coaggregation ability of Weissella cibaria isolates with Fusobacterium nucleatum and their adhesiveness to epithelial cells. FEMS Microbiol Lett 253:323–329. https://doi.org/10.1016/j.femsle.2005.10.002

    Article  CAS  PubMed  Google Scholar 

  34. Yasui T, Yoda K, Kamiya T (1995) Analysis of S layer proteins of Lactobacillus brevis. FEMS Microbiol Lett 133:181–186

    Article  CAS  Google Scholar 

  35. Sleytr UB, Schuster B, Egelseer EM, Pum D (2014) S-layers: principles and applications. FEMS Microbiol Rev 38:823–864. https://doi.org/10.1111/1574-6976.12063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De la Fuente-Núñez C, Mertens J, Smit J, Hancock REW (2012) The bacterial surface layer provides protection against antimicrobial peptides. Appl Environ Microbiol 78:5452–5456

    Article  Google Scholar 

  37. Eslami N, Kermanshahi RK, Erfan M (2013) Studying the stability of s-layer protein of Lactobacillus Acidophilus ATCC 4356 in simulated gastrointestinal fluids using SDS-PAGE and circular dichroism. Iranian J Pharma Res 12:47–56

    CAS  Google Scholar 

  38. Meng J, Zhu X, Gao SM, Zhang QX, Sun Z, Lu RR (2014) Characterization of surface layer proteins and its role in probiotic properties of three Lactobacillus strains. Int J Biol Macromol 65:110–114. https://doi.org/10.1016/j.ijbiomac.2014.01.024

    Article  CAS  PubMed  Google Scholar 

  39. Beganovic J, Frece J, Kos B, Lebosˇ-Pavunc A, Habjanicˇ K, Suskovic J (2011) Functionality of the S-layer protein from the probiotic strain Lactobacillus helveticus M92. Antonie Leeuwenhoek 100:43–53. https://doi.org/10.1007/s10482-011-9563-4

    Article  CAS  PubMed  Google Scholar 

  40. Garrote GL, Delfederico L, Bibiloni R, Abraham AG, Perez PF, Semorile L, De Antoni GL (2004) Lactobacilli isolated from kefir grains: evidence of the presence of S-layer proteins. J Dairy Res 71:222–230. https://doi.org/10.1017/S0022029904000160

    Article  CAS  PubMed  Google Scholar 

  41. Li Q, Liu X, Dong M, Zhou J, Wang Y (2015) Aggregation and adhesion abilities of 18 lactic acid bacteria strains isolated from traditional fermented food. Int J Agricultural Policy Res 3:84–92

    Google Scholar 

  42. Chen X, Xu J, Shuai J, Chen J, Zhang Z, Fang W (2007) The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium. Int J Food Microbiol 115:307–312. https://doi.org/10.1016/j.ijfoodmicro.2006.11.007

    Article  CAS  PubMed  Google Scholar 

  43. Golowczyc MA, Mobili P, Garrote GL, Abraham AG, De Antoni GL (2007) Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. Int J Food Microbiol 118:264–273

    Article  CAS  Google Scholar 

  44. Boris S, Suarez JE, Barbe's C, (1997) Characterization of the aggregation promoting factor from Lactobacillus gasseri, a vaginal isolate. J Appl Microbiol 83:413–420

    Article  CAS  Google Scholar 

  45. Reniero R, Cocconcelli P, Bottazzi V, Morelli M (1992) High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor. J General Microbiol 138:763–768

    Article  CAS  Google Scholar 

  46. Ehrenfeld E, Kessler RE, Clewell DB (1986) Identification of pheromone-ınduced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. J Bacteriol 168(1):1–12

    Article  Google Scholar 

  47. Aslım B, Onal D, Beyatlı Y (2007) Factors influencing autoaggregation and aggregation of Lactobacillus delbrueckii subsp. bulgaricus isolated from handmade yogurt. J Food Prot 70:223–227

    Article  Google Scholar 

  48. Yüksekdağ ZN, Aslim B (2010) 9 Assessment of potential probiotic and starter properties of pediococcus spp. isolated from Turkish-type fermented sausages (sucuk). J Microbiol Biotechnol 20:161–168. https://doi.org/10.4014/jmb.0904.04019

    Article  PubMed  Google Scholar 

  49. Tareb R, Bernardeau M, Gueguen M, Vernoux JP (2013) In vitro characterization of aggregation and adhesion properties of viable and heat-killed forms of two probiotic Lactobacillus strains and interaction with foodborne zoonotic bacteria, especially Campylobacter jejuni. J Med Microbiol 62:637–649. https://doi.org/10.1099/jmm.0.049965-0

    Article  CAS  PubMed  Google Scholar 

  50. Alp D, Kuleaşan H (2019) Determination of excopolisaccharide production and cholesterol asiımilation abilities of lactic acid bacteria isolated from different sources. J Food 44(2):191–201. https://doi.org/10.15237/gida.GD18059

    Article  Google Scholar 

  51. Carasi P, Ambrosis NM, De Antoni GL, Bressollier P, Urdaci MC, Serradell MA (2014) Adhesion properties of potentially probiotic Lactobacillus kefiri to gastrointestinal mucus. J Dairy Res 81:16–23. https://doi.org/10.1017/S0022029913000526

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J, Gao J, Guo Y, Wu Z, Pan D (2017) Extraction of Lactobacillus acidophilus CICC 6074 S-layer proteins and their ability to inhibit enteropathogenic Escherichia coli. Curr Microbiol. https://doi.org/10.1007/s00284-017-1291-1

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DA: Designed study, conducted GIS enzyme resistance and aggregation tests, isolated the S-layer from strains, made adhesion ability test, isolated and prepared the S-layer proteins for SEM analysis and wrote the publication. HA: Wrote the manuscript, analyzed the data by statistical program, isolated the proteins by SDS-PAGE, prepared the S-layer proteins for SEM analysis. AKA: contributed to GIS enzyme resistance and aggregation tests and SDS-PAGE.

Corresponding author

Correspondence to Duygu Alp.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alp, D., Kuleaşan, H. & Korkut Altıntaş, A. The importance of the S-layer on the adhesion and aggregation ability of Lactic acid bacteria. Mol Biol Rep 47, 3449–3457 (2020). https://doi.org/10.1007/s11033-020-05430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05430-6

Keywords

Navigation