Skip to main content
Log in

Reversal of deleterious effect of hypertension on the liver by inhibition of endoplasmic reticulum stress

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hypertension is an important risk factor for cardiovascular diseases. Besides cardiovascular system, it could cause damage to liver. It has been shown that endoplasmic reticulum stress (ERS) plays a crucial role in the pathogenesis of hypertension. ERS inhibitor tauroursodeoxycholic-acid (TUDCA) has favorable effects on various pathologies including cardiovascular, metabolic and hepatic diseases. In this study, the hepatoprotective effect and mechanism of TUDCA were investigated in the deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Male Wistar rats were used and divided into four groups: Control, DOCA, TUDCA and DOCA + TUDCA. Hypertension was induced by DOCA-salt administration for twelve weeks after the unilateral nephrectomy. TUDCA was given for the last 4 weeks. Systolic blood pressure was measured by using tail-cuff method. At the end of the treatment, liver was isolated and weighed. The expressions of various proteins and histopathological evaluation were examined in the liver. TUDCA markedly decreased systolic blood pressure in the hypertensive animals. Hypertension caused increase in the expressions of glucose-regulated protein-78 (GRP78), matrix metalloproteinase-2 (MMP-2) and phospho-inhibitor κB-α (p-IκB-α) and the decrease in the expression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and phospho-extracellular signal-regulated kinase (p-ERK) in the liver. Alterations in these protein expressions were not detected in the TUDCA-treated hypertensive group. Also, hepatic balloon degeneration, inflammation and fibrosis were observed in the hypertensive group. TUDCA improved inflammation and fibrosis in the hypertensive liver. Our findings indicate that the detrimental effect of DOCA-salt-induced hypertension on the liver was defended by the inhibition of ERS. Hepatic ERS and its treatment should be taken into consideration for therapeutic approaches to hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, Chen J, He J (2016) Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 134:441–450. https://doi.org/10.1161/CIRCULATIONAHA.115.018912

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iwanami J, Mogi M, Iwai M, Horiuchi M (2009) Inhibition of the renin-angiotensin system and target organ protection. Hypertens Res 32(4):229–237. https://doi.org/10.1038/hr.2009.5

    Article  CAS  PubMed  Google Scholar 

  3. Liu MQ, Chen Z, Chen LX (2016) Endoplasmic reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases. Acta Pharmacol Sin 37(4):425–443. https://doi.org/10.1038/aps.2015.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086. https://doi.org/10.1126/science.1209038

    Article  CAS  PubMed  Google Scholar 

  5. Hetz C, Papa FR (2018) The unfolded protein response and cell fate control. Mol Cell 69(2):169–181. https://doi.org/10.1016/j.molcel.2017.06.017

    Article  CAS  PubMed  Google Scholar 

  6. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Görgün CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ben Mosbah I, Alfany-Fernández I, Martel C, Zaouali MA, Bintanel-Morcillo M, Rimola A, Rodés J, Brenner C, Roselló-Catafau J, Peralta C (2010) Endoplasmic reticulum stress inhibition protects steatotic and non-steatotic livers in partial hepatectomy under ischemia-reperfusion. Cell Death Dis 1:e52. https://doi.org/10.1038/cddis.2010.29

    Article  CAS  PubMed  Google Scholar 

  8. Paridaens A, Raevens S, Devisscher L, Bogaerts E, Verhelst X, Hoorens A, Van Vlierberghe H, van Grunsven LA, Geerts A, Colle I (2017) Modulation of the unfolded protein response by tauroursodeoxycholic acid counteracts apoptotic cell death and fibrosis in a mouse model for secondary biliary liver fibrosis. Int J Mol Sci. https://doi.org/10.3390/ijms18010214

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hou Y, Yang H, Cui Z, Tai X, Chu Y, Guo X (2017) Tauroursodeoxycholic acid attenuates endoplasmic reticulum stress and protects the liver from chronic intermittent hypoxia induced injury. Exp Ther Med 14(3):2461–2468. https://doi.org/10.3892/etm.2017.4804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malhi H, Kaufman RJ (2011) Endoplasmic reticulum stress in liver disease. J Hepatol 54(4):795–809. https://doi.org/10.1016/j.jhep.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  11. Vang S, Longley K, Steer CJ, Low WC (2014) The unexpected uses of urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob Adv Health Med 3(3):58–69. https://doi.org/10.7453/gahmj.2014.017

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang JS, Kim JT, Jeon J, Park HS, Kang GH, Park KS, Lee HK, Kim S, Cho YM (2010) Changes in hepatic gene expression upon oral administration of taurine-conjugated ursodeoxycholic acid in ob/ob mice. PLoS ONE 5(11):e13858. https://doi.org/10.1371/journal.pone.0013858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lebeaupin C, Proics E, de Bieville CH, Rousseau D, Bonnafous S, Patouraux S, Adam G, Lavallard VJ, Rovere C, Le Thuc O, Saint-Paul MC, Anty R, Schneck AS, Iannelli A, Gugenheim J, Tran A, Gual P, Bailly-Maitre B (2015) ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Dis 6:e1879. https://doi.org/10.1038/cddis.2015.248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aslan M, Kıraç E, Yılmaz Ö, Ünal B, Konuk EK, Özcan F, Tuzcu H (2018) Effect of tauroursodeoxycholic acid on PUFA levels and inflammation in an animal and cell model of hepatic endoplasmic reticulum stress. Hum Exp Toxicol 37(8):803–816. https://doi.org/10.1177/0960327117734621

    Article  CAS  PubMed  Google Scholar 

  15. Han S, Uludag MO, Usanmaz SE, Ayaloglu-Butun F, Akcali KC, Demirel-Yilmaz E (2015) Resveratrol affects histone 3 lysine 27 methylation of vessels and blood biomarkers in DOCA salt-induced hypertension. Mol Biol Rep 42(1):35–42. https://doi.org/10.1007/s11033-014-3737-x

    Article  CAS  PubMed  Google Scholar 

  16. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321

    Article  PubMed  Google Scholar 

  17. Han S, Bal NB, Sadi G, Usanmaz SE, Tuglu MM, Uludag MO, Demirel-Yilmaz E (2019) Inhibition of endoplasmic reticulum stress protected DOCA-salt hypertension-induced vascular dysfunction. Vascul Pharmacol 113:38–46. https://doi.org/10.1016/j.vph.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  18. Wu FL, Liu WY, Van Poucke S, Braddock M, Jin WM, Xiao J, Li XK, Zheng MH (2016) Targeting endoplasmic reticulum stress in liver disease. Expert Rev Gastroenterol Hepatol 10(9):1041–1052. https://doi.org/10.1080/17474124.2016.1179575

    Article  CAS  PubMed  Google Scholar 

  19. Young CN (2017) Endoplasmic reticulum stress in the pathogenesis of hypertension. Exp Physiol 102(8):869–884. https://doi.org/10.1113/EP086274

    Article  CAS  PubMed  Google Scholar 

  20. Young CN, Cao X, Guruju MR, Pierce JP, Morgan DA, Wang G, Iadecola C, Mark AL, Davisson RL (2012) ER stress in the brain subfornical organ mediates angiotensin-dependent hypertension. J Clin Invest 122(11):3960–3964. https://doi.org/10.1172/JCI64583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kassan M, Galán M, Partyka M, Saifudeen Z, Henrion D, Trebak M, Matrougui K (2012) Endoplasmic reticulum stress is involved in cardiac damage and vascular endothelial dysfunction in hypertensive mice. Arterioscler Thromb Vasc Biol 32(7):1652–1661. https://doi.org/10.1161/ATVBAHA.112.249318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spitler KM, Matsumoto T, Webb RC (2013) Suppression of endoplasmic reticulum stress improves endothelium-dependent contractile responses in aorta of the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 305(3):H344–H353. https://doi.org/10.1152/ajpheart.00952.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu X, Kwak D, Lu Z, Xu X, Fassett J, Wang H, Wei Y, Cavener DR, Hu X, Hall J, Bache RJ, Chen Y (2014) Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling. Hypertension 64(4):738–744. https://doi.org/10.1161/HYPERTENSIONAHA.114.03811

    Article  CAS  PubMed  Google Scholar 

  24. Schoemaker MH, Conde de la Rosa L, Buist-Homan M, Vrenken TE, Havinga R, Poelstra K, Haisma HJ, Jansen PL, Moshage H (2004) Tauroursodeoxycholic acid protects rat hepatocytes from bile acid-induced apoptosis via activation of survival pathways. Hepatology 39(6):1563–1573

    Article  CAS  PubMed  Google Scholar 

  25. Nonaka M, Tazuma S, Hyogo H, Kanno K, Chayama K (2008) Cytoprotective effect of tauroursodeoxycholate on hepatocyte apoptosis induced by peroxisome proliferator-activated receptor gamma ligand. J Gastroenterol Hepatol 23(7 Pt 2):e198–e206

    Article  CAS  PubMed  Google Scholar 

  26. Alvaro D, Onori P, Metalli VD, Svegliati-Baroni G, Folli F, Franchitto A, Alpini G, Mancino MG, Attili AF, Gaudio E (2002) Intracellular pathways mediating estrogen-induced cholangiocyte proliferation in the rat. Hepatology 36(2):297–304

    Article  CAS  PubMed  Google Scholar 

  27. Marzioni M, LeSage G, Glaser S, Patel T, Marienfeld C, Ueno Y, Francis H, Alvaro D, Phinizy JL, Tadlock L, Benedetti A, Marucci L, Baiocchi L, Alpini G (2003) Taurocholate prevents the loss of intrahepatic bile ducts due to vagotomy in bile duct ligated rats. Am J Physiol Gastrointest Liver Physiol 284(5):G837–G852

    Article  CAS  PubMed  Google Scholar 

  28. Marzioni M, Francis H, Benedetti A, Ueno Y, Fava G, Venter J, Reichenbach R, Mancino MG, Summers R, Alpini G, Glaser S (2006) Ca2+-dependent cytoprotective effects of ursodeoxycholic and tauroursodeoxycholic acid on the biliary epithelium in a rat model of cholestasis and loss of bile ducts. Am J Pathol 168(2):398–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Svoboda DS, Kawaja MD (2012) Changes in hepatic protein expression in spontaneously hypertensive rats suggest early stages of non-alcoholic fatty liver disease. J Proteomics 75(6):1752–1763. https://doi.org/10.1016/j.jprot.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  31. Hemalatha G, Pugalendi KV, Saravanan R (2013) Modulatory effect of sesamol on DOCA-salt-induced oxidative stress in uninephrectomized hypertensive rats. Mol Cell Biochem 379(1–2):255–265. https://doi.org/10.1007/s11010-013-1647-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madonna R, De Caterina R (2012) Relevance of new drug discovery to reduce NF-κB activation in cardiovascular disease. Vascul Pharmacol 57(1):41–47. https://doi.org/10.1016/j.vph.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  33. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH (2006) Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol 26(8):3071–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prahalathan P, Saravanakumar M, Raja B (2012) The flavonoid morin restores blood pressure and lipid metabolism in DOCA-salt hypertensive rats. Redox Rep 17(4):167–175. https://doi.org/10.1179/1351000212Y.0000000015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Dr. H. Gurdal and B. Dalkilic for supporting this research with the Western Blot experiments.

Funding

This research was funded by the Ankara University Research Foundation (Grant No. 16B0230004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Banu Bal.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, N.B., Han, S., Kiremitci, S. et al. Reversal of deleterious effect of hypertension on the liver by inhibition of endoplasmic reticulum stress. Mol Biol Rep 47, 2243–2252 (2020). https://doi.org/10.1007/s11033-020-05329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05329-2

Keywords

Navigation