Skip to main content

Advertisement

Log in

Cytotoxic, antimicrobial and nitric oxide inhibitory activities of supercritical carbon dioxide extracted Prunus persica leaves

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Different parts of Prunus persica as fruits, flowers, leaves and kernels have been consumed with dietary and therapeutic purposes traditionally. During fruit production, remarkable amount of leaves which can hold important bioactive groups as phenolics, have been left unutilized. The aim of this study was to investigate cytotoxic, antimicrobial and nitric oxide inhibitory activities of supercritical carbondioxide extracts of Prunus persica leaves. Among studied cell lines, supercritical carbon dioxide extract which was processed at 150 bar, 60 °C, and 6% co-solvent ethanol, exhibited remarkable cytotoxic activity against HeLa, MPanc-96 and MCF-7 cell lines with IC50 values of 12.22 µg/ml, 28.17 µg/ml and 35.51 µg/ml respectively, whereas IC50 value of conventional solvent extract was above 50 µg/ml. Minimum inhibitory concentration values determined for antibacterial and antifungal activities against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium and Candida albicans were found as 62.50 µg/ml. Strong nitric oxide inhibition was achieved with IC50 of 9.30 µg/ml. The promising results revealed that Prunus persica leaves may have remarkable potential as supplement both for drug and food industries. This study is the first report revealing cytotoxic, antimicrobial and nitric oxide inhibitory activity of supercritical carbon dioxide extract of Prunus persica leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gur I (2011) Seftali yetistiriciligi. Meyvecilik Arastirma Istasyonu Mudurlugu, Isparta

    Google Scholar 

  2. Gilani AH, Aziz N, Ali SM, Saeed M (2000) Pharmacological basis for the use of peach leaves in constipation. J Ethnopharmacol 73:87–93

    CAS  PubMed  Google Scholar 

  3. The Food and Agriculture Organization. http://www.fao.org/faostat/. Accessed 4 Jan 2019

  4. Shirosaki M, Koyama T, Yazawa K (2012) Suppressive effect of peach leaf extract on glucose absorption from the small intestine of mice. Biosci Biotechnol Biochem 76:89–94

    CAS  PubMed  Google Scholar 

  5. Bhattacharjee C, Gupta D, Deb L, Kumar S, Debnath S, Dutta AS (2011) Effect of leave extract of Prunus persica Linn on acute inflammation in rats. Res J Pharmacogn Phytochem 3:38–40

    Google Scholar 

  6. Karadas O, Mese G, Ozcivici E (2018) Cytotoxic tolerance of healthy and cancerous bone cells to anti-microbial phenolic compounds depend on culture conditions. Appl Biochem Biotechnol 188:514–526

    PubMed  Google Scholar 

  7. Yang H-H, Zhang C, Lai S-H, Zeng C-C, Liu Y-J, Wang X-Z (2017) Isoliquiritigenin ınduces cytotoxicity in PC-12 cells ın vitro. Appl Biochem Biotechnol 183:1173–1190

    CAS  PubMed  Google Scholar 

  8. Song W, Qin S-T, Fang F-X, Gao Z-J, Liang D-D, Liu L-L, Tian H-T, Yang H-B (2018) Isolation and purification of condensed tannin from the leaves and branches of Prunus cerasifera and ıts structure and bioactivities. Appl Biochem Biotechnol 185:464–475

    CAS  PubMed  Google Scholar 

  9. Arora DS, Mahajan H (2018) In vitro evaluation and statistical optimization of antimicrobial activity of Prunus cerasoides stem bark. Appl Biochem Biotechnol 184:821–837

    CAS  PubMed  Google Scholar 

  10. Tarhan L, Nakipoğlu M, Kavakcıoğlu B, Tongul B, Nalbantsoy A (2016) The ınduction of growth ınhibition and apoptosis in HeLa and MCF-7 cells by Teucrium sandrasicum, having effective antioxidant properties. Appl Biochem Biotechnol 178:1028–1041

    CAS  PubMed  Google Scholar 

  11. Roopan SM, Kumar SHS, Madhumitha G, Suthindhiran K (2015) Biogenic-production of SnO2 nanoparticles and ıts cytotoxic effect against hepatocellular carcinoma cell line (HepG2). Appl Biochem Biotechnol 175:1567–1575

    CAS  PubMed  Google Scholar 

  12. Abrisqueta I, Conejero W, López-Martínez L, Vera J, Ruiz Sánchez MC (2017) Root and aerial growth in early-maturing peach trees under two crop load treatments. Span J Agric Res 15:18

    Google Scholar 

  13. Kazan A, Koyu H, Turu IC, Yesil-Celiktas O (2014) Supercritical fluid extraction of Prunus persica leaves and utilization possibilities as a source of phenolic compounds. J Supercrit Fluid 92:55–59

    CAS  Google Scholar 

  14. Yalcin HT, Ozen MO, Gocmen B, Nalbantsoy A (2014) Effect of Ottoman viper (Montivipera xanthina (Gray, 1849)) venom on various cancer cells and on microorganisms. Cytotechnology 66:87–94

    CAS  PubMed  Google Scholar 

  15. Clinical and Laboratory Standards Institute (2009) Performance standards for antimicrobial susceptibility testing. In: Nineteenth informational supplement. Approved standard M100-S19. ed. Wayne, PA

  16. Nalbantsoy A, Nesil T, Yılmaz-Dilsiz Ö, Aksu G, Khan S, Bedir E (2012) Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species. J Ethnopharmacol 139:574–581

    CAS  PubMed  Google Scholar 

  17. Dhingra N, Kar A, Sharma R (2018) Inhibition of aromatase and cell proliferation of breast cancer and human placenta choriocarcinoma by Prunus persica extracts. Indian J Pharm Sci 80:903–910

    Google Scholar 

  18. Demir S, Turan I, Demir F, Ayazoglu Demir E, Aliyazicioglu Y (2017) Cytotoxic effect of Laurocerasus officinalis extract on human cancer cell lines. Mamar Pharm J 21:121–126

    CAS  Google Scholar 

  19. Meschini S, Pellegrini E, Condello M, Occhionero G, Delfine S, Condello G, Mastrodonato F (2017) Cytotoxic and apoptotic activities of Prunus spinosa trigno ecotype extract on human cancer cells. Molecules 22:1578

    PubMed Central  Google Scholar 

  20. Manogna C, Bhaumik A, Haritha T, Nasreen S, Sucharitha M, Uttara M (2016) Evaluation of cytotoxic activity of various extracts of sweet cherry (Prunus avium) against human colorectal adenocarcinoma HT-29 cell line. Int J Chem Stud 4:17–21

    CAS  Google Scholar 

  21. Poongodi T, Srikanth R, Lalitha G (2015) Phytochemistry, GC-MS analysis and invitro cytotoxic activity of Prunus angustifolia leaves against MCF-7 breast cancer cell line. World J Pharm Pharm Sci 4:1489–1499

    CAS  Google Scholar 

  22. Jumaa AH, Hussein SM, Akafi L (2015) Study the in vitro effect of alcoholic extract of Prunus aremasia kernels, methotrexate, amygdalin and the combination between them on Hela cancer cell line. Iraqi J Cancer Med Gen 8:101–108

    Google Scholar 

  23. Maiyoa F, Moodleyb R, Singha M (2016) Phytochemistry, cytotoxicity and apoptosis studies of β-sitosterol-3-O-glucoside and β-amyrin from Prunus africana. Afr J Tradit Complement Altern Med 13:105–112

    Google Scholar 

  24. Vizzotto M, Porter W, Byrne D, Cisneros-Zevallos L (2014) Polyphenols of selected peach and plum genotypes reduce cell viability and inhibit proliferation of breast cancer cells while not affecting normal cells. Food Chem 164:363–370

    CAS  PubMed  Google Scholar 

  25. Yu MH, Im HG, Lee SO, Sung C, Park DC, Lee IS (2007) Induction of apoptosis by immature fruits of Prunus salicina Lindl. cv. Soldam in MDA-MB-231 human breast cancer cells. Int J Food Sci Nutr 58:42–53

    CAS  PubMed  Google Scholar 

  26. Fujii T, Ikami T, Xu J-W, Ikeda K (2006) Prune extract (Prunus domestica l.) suppresses the proliferation and induces the apoptosis of human colon carcinoma Caco-2. J Nutr Sci Vitam 52:389–391

    CAS  Google Scholar 

  27. Noratto G, Porter W, Byrne D, Cisneros-Zevallos L (2009) Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J Agric Food Chem 57:5219–5226

    CAS  PubMed  Google Scholar 

  28. Lea MA, Ibeh C, des Bordes C, Vizzotto M, Cisneros-Zevallos L, Byrne DH, Okie WR, Moyer MP (2008) Inhibition of growth and induction of differentiation of colon cancer cells by peach and plum phenolic compounds. Anticancer Res 28:2067–2076

    CAS  PubMed  Google Scholar 

  29. Huang W-Y, Cai Y-Z, Zhang Y (2009) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62:1–20

    Google Scholar 

  30. Ozpınar H, Dağ Ş, Yiğit E (2013) Şeftali (Persica vulgaris Miller) yaprak ekstraktının antibakteriyel etkisi. Cumhur Med J 35:172–178

    Google Scholar 

  31. Oyetayo AM, Bada SO (2017) Phytochemical screening and antibacterial activity of Prunus avium extracts against selected human pathogens. J Complement Altern Med 4:1–8

    Google Scholar 

  32. Arora DS, Mahajan H (2019) Major phytoconstituents of Prunus cerasoides responsible for antimicrobial and antibiofilm potential against some reference strains of pathogenic bacteria and clinical ısolates of MRSA. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-019-02985-4

    Article  PubMed  Google Scholar 

  33. Yaqeen Z, Naqvi NU, Sohail T, Rehman ZU, Fatima N, Imran H, Rehman A (2013) Screening of solvent dependent antibacterial activity of Prunus domestica. Pak J Pharm Sci 26:409–414

    PubMed  Google Scholar 

  34. Rashid F, Ahmed R, Mahmood A, Ahmad Z, Bibi N, Kazmi SU (2007) Flavonoid glycosides from Prunus armeniaca and the antibacterial activity of a crude extract. Arch Pharm Res 30:932–937

    CAS  PubMed  Google Scholar 

  35. Rovčanin BR, Ćebović T, Stešević D, Kekić D, Ristić M (2015) Antibacterial effect of Herniaria hirsuta, Prunus avium, Rubia tinctorum and Sempervivum tectorum plant extracts on multiple antibiotic resistant Escherichia coli. Biosci J 31:1852–1861

    Google Scholar 

  36. Yigit D, Yigit N, Mavi A (2009) Antioxidant and antimicrobial activities of bitter and sweet apricot (Prunus armeniaca L.) kernels. Braz J Med Biol Res 42:346–352

    CAS  PubMed  Google Scholar 

  37. Singh P, Ahn S, Kang J-P, Veronika S, Huo Y, Singh H, Chokkaligam M, El-Agamy Farh M, Aceituno VC, Kim YJ, Yang D-C (2018) In vitro anti-inflammatory activity of spherical silver nanoparticles and monodisperse hexagonal gold nanoparticles by fruit extract of Prunus serrulata: a green synthetic approach. Artif Cells Nanomed Biotechnol 46:2022–2032

    CAS  PubMed  Google Scholar 

  38. Sharma A, Joshi R, Kumar S, Sharma R, Rajneesh, Padwad Y, Gupta M (2018) Prunus cerasoides fruit extract ameliorates inflammatory stress by modulation of iNOS pathway and Th1/Th2 immune homeostasis in activated murine macrophages and lymphocytes. Inflammopharmacology 26:1483–1495

    CAS  PubMed  Google Scholar 

  39. Tettey CO, Lincha VR, Lee DU, Yang IJ, Shin HM (2016) Anti-ınflammatory effects of the flowers of Prunus persica var. davidiana. J Food Biochem 40:227–234

    CAS  Google Scholar 

  40. Lee J, Yang G, Lee K, Lee MH, Eom JW, Ham I, Choi HY (2013) Anti-inflammatory effect of Prunus yedoensis through inhibition of nuclear factor-kappa B in macrophages. BMC Complement Altern Med 13:9

    Google Scholar 

  41. Rho JR, Jun CS, Ha YA, Yoo MJ, Cui MX, Baek HS, Lim JA, Lee YH, Chai KY (2007) Isolation and characterization of a new alkaloid from the seed of Prunus persica L. and its anti-inflammatory activity. Bull Korean Chem Soc 28:1289–1293

    CAS  Google Scholar 

  42. Kim SK, Kim HJ, Choi SE, Park KH, Choi HK, Lee MW (2008) Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E2 (COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg. Arch Pharm Res 31:424–428

    CAS  PubMed  Google Scholar 

  43. Zhao X, Zhang W, Yin X, Su M, Sun C, Li X, Chen K (2015) Phenolic composition and antioxidant properties of different peach [Prunus persica (L.) Batsch] cultivars in China. Int J Mol Sci 16:5762

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Saidani F, Giménez R, Aubert C, Chalot G, Betrán JA, Gogorcena Y (2017) Phenolic, sugar and acid profiles and the antioxidant composition in the peel and pulp of peach fruits. J Food Compos Anal 62:126–133

    CAS  Google Scholar 

  45. Mezzomo N, Mileo BR, Friedrich MT, Martinez J, Ferreira SR (2010) Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition. Bioresour Technol 101:5622–5632

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Access to the facilities of Novel Fluidic Technologies Laboratory at Department of Bioengineering, Pharmaceutical Sciences Research Center (FABAL) and IKCU EFAL at Faculty of Pharmacy are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Koyu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyu, H., Kazan, A., Nalbantsoy, A. et al. Cytotoxic, antimicrobial and nitric oxide inhibitory activities of supercritical carbon dioxide extracted Prunus persica leaves. Mol Biol Rep 47, 569–581 (2020). https://doi.org/10.1007/s11033-019-05163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05163-1

Keywords

Navigation