Skip to main content
Log in

Genome-wide mining of microsatellites in king cobra (Ophiophagus hannah) and cross-species development of tetranucleotide SSR markers in Chinese cobra (Naja atra)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The complete genome sequence provides the opportunity for genome-wide and coding region analysis of SSRs in the king cobra and for cross-species identification of microsatellite markers in the Chinese cobra. In the Ophiophagus hannah genome, tetranucleotide repeats (38.03%) were the most abundant category, followed by dinucleotides (23.03%), pentanucleotides (13.07%), mononucleotides (11.78%), trinucleotides (11.49%) and hexanucleotides (2.6%). Twenty predominant motifs in the O. hannah genome were (A)n (C)n, (AC)n, (AG)n, (AT)n, (AGG)n, (AAT)n, (AAG)n, (AAC)n, (ATG)n, (ATAG)n, (AAGG)n, (ATCT)n, (CCTT)n, (ATTT)n, (AAAT)n, (AATAG)n, (ATTCT)n, (ATATGT)n, (AGATAT)n. In total, 4344 SSRs were found in coding sequences (CDSs). Tetranucleotides (52.79%) were the most abundant microsatellite type in CDS, followed by trinucleotides (28.50%), dinucleotides (11.02%), pentanucleotides (4.42%), mononucleotides (1.77%), and hexanucleotides (1.50%). A total of 984 CDSs containing microsatellites were assigned 11152 Gene Ontology (GO) functional terms. Gene Ontology (GO) analysis demonstrated that cellular process, cell and binding were the most frequent GO terms in biological process, cellular component and molecular function, respectively. Thirty-two novel highly polymorphic (PIC > 0.5) SSR markers for Naja atra were developed from cross-species amplification based on the tetranucleotide microsatellite sequences in the king cobra genome. The number of alleles (NA) per locus had between 3 and 11 alleles with an average of 6.5, the polymorphism information content (PIC) value ranged from 0.521 to 0.858 (average = 0.707), the observed heterozygosity (Ho) of 32 microsatellite loci ranged from 0.292 to 0.875 (mean = 0.678), the expected heterozygosity (HE) ranged from 0.561 to 0.889 (average = 0.761), and 3 microsatellite loci exhibited statistically significant departure from Hardy–Weinberg equilibrium (HWE) after Bonferroni correction (p < 0.003).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17(16):6463–6471

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Powell W, Morgante M, Mcdevitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci USA 92(17):7759–77633

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun J, University NA, Entomology DO (2012) The application of microsatellite markers in insect molecular ecology. J Nanjing Agric Univ 11(1):1–6

    CAS  Google Scholar 

  4. Li Y, Korol AB, Fahima T, Beiles A, Nevo E (2010) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11(12):2453–2465

    Google Scholar 

  5. Wissler L, Godmann L, Bornbergbauer E (2012) Evolutionary dynamics of simple sequence repeats across long evolutionary time scale in genus Drosophila. Trends Evol Biol 4(1):34–44

    CAS  Google Scholar 

  6. Kim KS, Ratcliffe ST, French BW, Liu L, Sappington TW (2008) Utility of EST-derived SSRS as population genetics markers in a beetle. J Hered 99(2):112

    CAS  PubMed  Google Scholar 

  7. Lópezsepúlveda P, Takayama K, Greimler J, Crawford DJ, Peñailillo P, Baeza M et al (2016) Speciation and biogeography of erigeron (Asteraceae) in the Juan Fernández Archipelago, Chile, based on AFLPS and SSRS. Syst Bot 40(3):888–899

    Google Scholar 

  8. Bao Y, Zhou HF, Hong DY, Ge S (2006) Genetic diversity and evolutionary relationships of oryza, species with the b- and c-genomes as revealed by SSR markers. J Plant Biol 49(5):339–347

    CAS  Google Scholar 

  9. Gaurav S, Pérez-Pulido AJ, Thac D, Seong TY, Casimiro-Soriguer CS, Nicola LP et al (2016) Plantfuncssr: integrating first and next generation transcriptomics for mining of SSR-functional domains markers. Front Plant Sci 7:878

    Google Scholar 

  10. Ditta A, Zhou Z, Cai X, Shehzad M, Wang X, Okubazghi K et al (2018) Genome-wide mining and characterization of SSR markers for gene mapping and gene diversity in Gossypium barbadense L. and Gossypium darwinii G. Watt accessions. Agronomy 8(9):181

    CAS  Google Scholar 

  11. Wang Q, Fang L, Chen J, Hu Y, Si Z, Wang S et al (2015) Genome-wide mining, characterization, and development of microsatellite markers in gossypium species. Sci Rep 5:10638

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Saha D, Rana RS, Das S, Datta S, Mitra J, Cloutier SJ et al (2019) Genome-wide regulatory gene-derived SSRs reveal genetic differentiation and population structure in fiber flax genotypes. J Appl Genet 60(1):13–25

    CAS  PubMed  Google Scholar 

  13. Xuewen W, Le W (2016) Gmata: an integrated software package for genome-scale SSR mining, marker development and viewing. Front Plant Sci 7:1350

    Google Scholar 

  14. Avvaru AK, Saxena S, Sowpati DT, Mishra RK (2017) MSDB: a comprehensive database of simple sequence repeats. Genome Biol Evol 9(6):1797–1802

    PubMed  PubMed Central  Google Scholar 

  15. Du L, Zhang C, Liu Q, Zhang X, Yue B (2017) Krait: an ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 34(4):681–683

    Google Scholar 

  16. Tin M, Rai M, Maung C, Tun P, Warrell DA (1991) Bites by the King cobra (Ophiophagus hannah) in Myanmar: successful treatment of severe neurotoxic envenoming. Q J Med 80(293):751–762

    Google Scholar 

  17. Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, Mccleary RJ et al (2013) The King cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. PNAS 110(51):20651–20656

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang H, He H (2018) Characterization of multidrug-resistant Klebsiella pneumoniae isolated from the Chinese cobra Naja atra in a Beijing suburb. Biocell 42(2):47–54

    Google Scholar 

  19. Zhou Z, Jiang Z (2004) International trade status and crisis for snake species in China. Conserv Biol 18(5):1386–1394

    Google Scholar 

  20. Lin LH, Mao LX, Luo X, Qu YF, Ji X (2011) Isolation and characterization of microsatellite loci in the chinese cobra Naja atra (Elapidae). Int J Mol Sci 12(7):4435–4440

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu D, Zheng XX, Yao YT, Lin LH (2015) Development of microsatellite markers in the rice paddy snake Enhydris plumbea, (Colubridae). Conserv Genet Resour 7(1):155–156

    CAS  Google Scholar 

  22. Bergey CM, Pozzi L, Disotell TR et al (2013) A new method for genome-wide marker development and genotyping holds great promise for molecular primatology. Int J Primatol 34(2):303–314

    Google Scholar 

  23. Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L et al (2014) Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in foxtail millet [Setaria italica (L.) P. Beauv]. BMC Genom 15(1):78

    CAS  Google Scholar 

  24. Xu Y, Hu Z, Wang C, Zhang X, Li J, Yue B (2016) Characterization of perfect microsatellite based on genome-wide and chromosome level in Rhesus monkey (Macaca mulatta). Gene 592(2):269–275

    CAS  PubMed  Google Scholar 

  25. Altschul SF, Madden TL, Zhang J et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein detabase search programs. Nucleic Acids Res 25(17):3389–3402

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    CAS  PubMed  Google Scholar 

  27. Ye J, Fang L, Zheng HK et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Google Scholar 

  28. Young MD, Wakefield MJ, Symth GK et al (2012) GOSEQ: gene ontology testing for RNA-seq datasets. R Bioconductor

  29. Maere S, Heymans K, Kuiper M (2005) Bingo: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449

    CAS  PubMed  Google Scholar 

  30. Jones R, Cable J, Bruford MW (2008) An evaluation of non-invasive sampling for genetic analysis in northern European reptiles. Herpetol J 18(1):32–39

    Google Scholar 

  31. Li Q, Wan JM (2005) SSR hunter: development of a local searching software for SSR sites. Hereditas 27(5):808–810

    PubMed  Google Scholar 

  32. Lalitha S (2000) Primer premier 5. Biotech Softw Internet Rep 1(6):270–272

    Google Scholar 

  33. Ju J, Ruan C, Fuller CW, Glazer AN et al (1995) Fluorescence energy transfer dye-labeled primers for dna sequencing and analysis. Proc Natl Acad Sci USA 92(10):4347–4351

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18(2):233–234

    CAS  PubMed  Google Scholar 

  35. Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7(5):639–655

    CAS  PubMed  Google Scholar 

  36. Raymond M, Rousset F (1995) Genepop (version 1.22): population genetics software for exact tests and ecumenicism. Heredity 86(3):248–249

    Google Scholar 

  37. Nguyen TTB, Rimatsu A, Hong Y et al (2015) Genome-wide characterization of microsatellites and marker development in the carcinogenic liver Flukeclonorchis sinensis. Parasitol Res 114(6):2263–2272

    PubMed  PubMed Central  Google Scholar 

  38. Ma ZJ (2015) Genome-wide characterization of perfect microsatellites in yak (Bos grunniens). Genetica 143(4):515–520

    CAS  PubMed  Google Scholar 

  39. Liu S, Hou W, Sun T, Xu Y, Li P, Yue B et al (2017) Genome-wide mining and comparative analysis of microsatellites in three macaque species. Mol Genet Genomics 292(3):537–550

    CAS  PubMed  Google Scholar 

  40. Todd AC, Alexander WP, Jason DE, Koning AP et al (2012) Rapid microsatellite identification from illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE 7(2):e30953

    Google Scholar 

  41. Qian J, Xu H, Song J, Xu J, Zhu Y, Chen S (2013) Genome-wide analysis of simple sequence repeats in the model medicinal mushroom Ganoderma lucidum. Gene (Amsterdam) 512(2):331–336

    CAS  Google Scholar 

  42. Jessy LMC, Morin E, Tacon FL, Martin F (2011) Survey and analysis of simple sequence repeats in thelaccaria bicolorgenome, with development of microsatellite markers. Curr Genet 57(2):75–88

    Google Scholar 

  43. Siddle KJ, Goodship JA, Keavney B, Santibanez-Koref MF (2011) Bases adjacent to mononucleotide repeats show an increased single nucleotide polymorphism frequency in the human genome. Bioinformatics 27(7):895–898

    CAS  PubMed  Google Scholar 

  44. Qi WH, Jiang XM, Du LM et al (2015) Genome-wide survey and analysis of microsatellite sequences in bovid species. PLoS ONE 10(7):e0133667

    PubMed  PubMed Central  Google Scholar 

  45. Vianna JA, Noll D, Murajornet I et al (2017) Comparative genome-wide polymorphic microsatellite markers in Antarctic penguins through next generation sequencing. Genet Mol Biol 40(3):676–687

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bai C, Liu S, Zhuang Z (2016) Characteristic analysis of microsatellite DNA in the genome of Gobiidae. Prog Fish Sci 05:9–15

    Google Scholar 

  47. Wang C, Du LM, Li P et al (2015) Distribution patterns of microsatellites in the genome of the German cockroach (Blattella germanica). Acta Entomol Sin 58(10):1037–1045

    CAS  Google Scholar 

  48. Mckinney K, Sprecher S, Orbuch TL (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol 4(2):1–10

    Google Scholar 

  49. Huang J, Li YZ, Du LM, Yang B, Shen FJ, Zhang HM et al (2015) Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca), with a focus on the applications of a novel microsatellite marker system. BMC Genom 16(1):61

    Google Scholar 

  50. Castoe TA, Poole AW, Wanjun GU, Koning APJD, Daza JM, Smith EN et al (2010) Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol Ecol Resour 10(2):341–347

    CAS  PubMed  Google Scholar 

  51. Glenn TC, Lance SL, Mckee AM, Webster BL, Faircloth BC (2013) Significant variance in genetic diversity among populations of schistosoma haematobium detected using microsatellite dna loci from a genome-wide database. Parasites Vectors 6(1):300

    PubMed  PubMed Central  Google Scholar 

  52. Castagnone-Sereno P, Danchin EG, Deleury E, Guillemaud T, Malausa T, Abad P (2010) Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic speciesmeloidogyne incognita. BMC Genom 11(1):598

    Google Scholar 

  53. Pasquesi GIM, Adams RH, Card DC et al (2018) Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals. Nat Commun 9(1):2774–2784

    PubMed  PubMed Central  Google Scholar 

  54. Castoe TA, Koning AP, Hall KT et al (2013) The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. PNAS 110(51):20645–20650

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Castoe TA, Hall KT, Mboulas MLG et al (2011) Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol Evol 3(1):641–653

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA et al (2013) Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLOS ONE 8:e54710

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhargava A, Fuentes FF (2010) Mutational dynamics of microsatellites. Mol Biotechnol 44(3):250–266

    CAS  PubMed  Google Scholar 

  58. Schlötterer C (1998) Genome evolution: are microsatellites really simple sequences. Curr Biol 8(4):132–134

    Google Scholar 

  59. Ding S, Wang S, He K, Jiang M, Li F (2017) Large-scale analysis reveals that the genome features of simple sequence repeats are generally conserved at the family level in insects. BMC Genom 18(1):848

    Google Scholar 

  60. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive dna in plant genomes. Nat Genet 30(2):194–200

    CAS  PubMed  Google Scholar 

  61. Fondon JW, Hammock EAD, Hannan AJ, King DG (2008) Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 31(7):328–334

    CAS  PubMed  Google Scholar 

  62. Francki M, Sharopova N (2008) Plant simple sequence repeats: distribution, variation, and effects on gene expression. Genome 51(2):79–90

    Google Scholar 

  63. Li YC, Korol A, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21(6):991–1007

    CAS  PubMed  Google Scholar 

  64. Filiz E, Dogan I, Ozyigit II (2016) Analysis of EST-SSRS in silver birch (Betula pendula Roth.). J For Res 27(3):639–646

    CAS  Google Scholar 

  65. Yue BS, Li J, Hu TZ, Zhang XY, Li GZ, Jiang XM et al (2016) Distinct patterns of simple sequence repeats and GC distribution in intragenic and intergenic regions of primate genomes. Aging 8(11):2635–2650

    PubMed  PubMed Central  Google Scholar 

  66. Kelkar YD, Eckert KA, Chiaromonte F, Makova KD (2011) A matter of life or death: how microsatellites emerge in and vanish from the human genome. Genome Res 21(12):2038–2048

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res 10(1):72–80

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee HS, Park KU, Kim DW et al (2016) Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and microsatellite instability in patients with colorectal cancer and its clinical features. Curr Mol Med 16(9):829–839

    CAS  PubMed  Google Scholar 

  69. Metzgar D, Wills C (2000) Evidence for the adaptive evolution of mutation rates. Cell 101(6):581–584

    CAS  PubMed  Google Scholar 

  70. Metzgar D, Wills C, Trivedi S (2014) Analysis of simple sequence repeats in mammalian cell cycle genes. Recent Adv DNA Gene Seq 8(1):20–29

    PubMed  Google Scholar 

  71. Chiang CM, Chien KY, Lin HJ et al (1996) Conformational change and inactivation of membrane phospholipid-related activity of cardiotoxin V from Taiwan cobra venom at acidic pH. Biochemistry 35(28):9167–9176

    CAS  PubMed  Google Scholar 

  72. Gutierrez EM, Seebacher NA, Arzuman L et al (2016) Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT. Biochem Biophys Acta 7:1665–1681

    Google Scholar 

  73. Ulrich LE, Zhulin IB (2007) MiST: a microbial signal transduction database. Nucleic Acids Res 35:D386–D390

    CAS  PubMed  Google Scholar 

  74. Zhu H, Guo L, Song P et al (2016) Development of genome-wide SSR markers in melon with their cross-species transferability analysis and utilization in genetic diversity study. Mol Breed 36(11):153–166

    Google Scholar 

  75. Kaldate R, Rana M, Sharma V et al (2017) Development of genome-wide SSR markers in horsegram and their use for genetic diversity and cross-transferability analysis. Mol Breeding 37:103–112

    Google Scholar 

  76. Poissant J, Shafer ABA, Davis CS et al (2009) Genome-wide cross-amplification of domestic sheep microsatellites in bighorn sheep and mountain goats. Mol Ecol Resour 9(4):1121–1126

    CAS  PubMed  Google Scholar 

  77. Francisco LV, Langsten AA, Mellersh CS et al (1996) A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 7(5):359

    CAS  PubMed  Google Scholar 

  78. Sugita T, Semi Y, Sawada H, Utoyama Y, Hosomi Yuko (2013) Development of simple sequence repeat markers and construction of a high-density linkage map of Capsicum annuum. Mol Breeding 31(4):909–920

    CAS  Google Scholar 

  79. Xu TJ, Sun DQ, Shi G, Wang RX (2010) Development and characterization of polymorphic microsatellite markers in the gray mullet (Mugil cephalus). Genet Mol Res 9(3):1791

    CAS  PubMed  Google Scholar 

  80. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Abdul-Muneer PM (2014) Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet Res Int. https://doi.org/10.1155/2014/691759

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garayalde AF, Poverene M, Cantamutto M, Carrera AD (2011) Wild sunflower diversity in Argentina revealed by ISSR and SSR markers: an approach for conservation and breeding programmes. Ann Appl Biol 158(3):305–317

    CAS  Google Scholar 

  83. Kumar M, Sharma VR, Kumar V, Sirohi U, Sharma S (2018) Genetic diversity and population structure analysis of indian garlic (Allium sativum L.) collection using SSR markers. Physiol Mol Biol Plants 25(2):377–386

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by 973 Projects NSFC31671455 and 2015CB755702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Yang.

Ethics declarations

Conflicts of interest

There are no conflicts of interest among authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Xu, Y., Li, Z. et al. Genome-wide mining of microsatellites in king cobra (Ophiophagus hannah) and cross-species development of tetranucleotide SSR markers in Chinese cobra (Naja atra). Mol Biol Rep 46, 6087–6098 (2019). https://doi.org/10.1007/s11033-019-05044-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05044-7

Keywords

Navigation