Skip to main content

Advertisement

Log in

Expression of interferon regulatory factors (IRF-1 and IRF-2) during radiation-induced damage and regeneration of bone marrow by transplantation in mouse

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Interferon regulatory factors (IRF-1 and IRF-2) are transcription factors of IRF-family that regulate expression of genes for cytokines, chemokines and growth factors in mammalian cells. IRF-1 and IRF-2 play crucial roles in the differentiation of bone marrow cells for immune response. Bone marrow (BM) is the soft lymphoid organ that contains many types of stem cells and produces different types of cells of the blood and immune system. Genetic alterations and damage of the bone marrow cells can lead to different types of blood and immune system-related diseases including anemia and cancer. We have studied the expression of IRF-1 and IRF-2 during radiation-induced damage and regeneration of bone marrow cells after transplantation of freshly isolated bone marrow cells in the mouse. Cell cycle analysis, colony forming unit-fibroblast (CFU-F) assay and bone marrow histology showed that after radiation-induced damage, the bone marrow transplantation resulted in regeneration of the bone marrow up to 24–35% recovery. Real-time quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) for the mRNA expression showed that IRF-1 and IRF-2 were expressed at higher levels in the bone marrow cells of the irradiated (4.34× fold for IRF-1, and 3.87× fold for IRF-2) compared to control and transplanted (1.13× fold for IRF-1, and 1.12× fold IRF-2) mice and immuno-fluorescence analysis for the protein expression showed that IRF-1 and IRF-2 were expressed at higher levels in the bone marrow cells of the irradiated (2.12× fold for IRF-1 and 1.71× fold for IRF-2) compared to control and transplanted (1.73× fold for IRF-1 and 1.21× fold for IRF-2) mice. Thus, IRF-1 and IRF-2 are sensitive and responsive to radiation-induced damage in the bone marrow cells and may also be involved in the bone marrow regeneration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584

    Article  CAS  PubMed  Google Scholar 

  2. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N (2001) IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19:623–655

    Article  CAS  PubMed  Google Scholar 

  3. Upreti M, Rath PC (2005) Expression and DNA binding activity of the recombinant interferon regulatory factor-1 (IRF-1) of mouse. Mol Biol Rep 32:103–116

    Article  CAS  PubMed  Google Scholar 

  4. Romeo G, Fiorucci G, Chiantore MV, Percario ZA, Vannucchi S, Affabris E (2002) IRF-1 as a negative regulator of cell proliferation. J Interferon Cytokine Res 22:39–47

    Article  CAS  PubMed  Google Scholar 

  5. Zhao GN, Jiang DS, Li H (2015) Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease. Biochim Biophys Acta 1852:365–378

    Article  CAS  PubMed  Google Scholar 

  6. Sato T, Onai N, Yoshihara H, Arai F, Suda T, Ohteki T (2009) Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon–dependent exhaustion. Nat Med 15:696–700

    Article  CAS  PubMed  Google Scholar 

  7. Perazzio AS, Oliveira JS, Figueiredo VL, Chauffaille ML (2017) Increase of IRF-1 gene expression and impairment of T regulatory cells suppression activity on patients with myelodysplastic syndrome: a longitudinal one-year study. Leuk Res 55:6–17

    Article  CAS  PubMed  Google Scholar 

  8. Travlos GS (2006) Normal structure, function, and histology of the bone marrow. Toxicol Pathol 34:548–565

    Article  PubMed  Google Scholar 

  9. Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, Wang G, Zou W (2012) Bone marrow and the control of immunity. Cell Mol Immunol 9:11–19

    Article  CAS  PubMed  Google Scholar 

  10. Yu VW, Scadden DT (2016) Heterogeneity of the bone marrow niche. Curr Opin Hematol 23:331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poncin G, Beaulieu A, Humblet C, Thiry A, Oda K, Boniver J, Defresne MP (2012) Characterization of spontaneous bone marrow recovery after sublethal total body irradiation: importance of the osteoblastic/adipocytic balance. PLoS ONE 7:e30818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilke C, Holtan SG, Sharkey L, DeFor T, Arora M, Premakanthan P, Yohe S, Vagge S, Zhou D, Holter Chakrabarty JL, Mahe M, Corvo R, Dusenbery K, Storme G, Weisdorf DJ, Verneris MR, Hui S (2016) Marrow damage and hematopoietic recovery following allogeneic bone marrow transplantation for acute leukemias: effect of radiation dose and conditioning regimen. Radiother Oncol 118:65–71

    Article  PubMed  Google Scholar 

  13. Cui YZ, Hisha H, Yang GX, Fan TX, Jin T, Li Q, Lian Z, Ikehara S (2002) Optimal protocol for total body irradiation for allogeneic bone marrow transplantation in mice. Bone Marrow Transplant 30:843–849

    Article  PubMed  Google Scholar 

  14. Duran-Struuck R, Dysko RC (2009) Principles of bone marrow transplantation (BMT): providing optimal veterinary and husbandry care to irradiated mice in BMT studies. J Am Assoc Lab Anim Sci 48:11–22

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liebermann DA, Hoffman B (2009) Good and bad IRF-1: role in tumor suppression versus autoimmune disease. Leuk Res 33:1301–1302

    Article  PubMed  Google Scholar 

  16. Nascimento FR, Gomes EA, Russo M, Lepique AP (2015) Interferon regulatory factor (IRF)-1 is a master regulator of the cross talk between macrophages and L929 fibrosarcoma cells for nitric oxide dependent tumoricidal activity. PLoS ONE 10:e0117782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paun A, Pitha PM (2007) The IRF family, revisited. Biochimie 89:744–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yanai H, Negishi H, Taniguchi T (2012) The IRF family of transcription factors: inception, impact and implications in oncogenesis. Oncoimmunology 1:1376–1386

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chaudhary JK, Rath PC (2017) A simple method for isolation, propagation, characterization, and differentiation of adult mouse bone marrow-derived multipotent mesenchymal stem cells. J Cell Sci Ther 8:1. https://doi.org/10.4172/2157-7013

    Article  Google Scholar 

  20. Soleimani M, Nadri S (2009) A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 4:102–106

    Article  CAS  PubMed  Google Scholar 

  21. Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY, Zhang Y, Mao N (2010) A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 5:550–560

    Article  CAS  PubMed  Google Scholar 

  22. Roy S, Javed S, Jain SK, Majumdar SS, Mukhopadhyay A (2012) Donor hematopoietic stem cells confer long-term marrow reconstitution by self-renewal divisions exceeding to that of host cells. PLoS ONE 7:e50693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaudhary JK, Rath PC (2017) Microgrooved-surface topography enhances cellular division and proliferation of mouse bone marrow-derived mesenchymal stem cells. PLoS ONE 12:e0182128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    Article  CAS  PubMed  Google Scholar 

  25. Baustian C, Hanley S, Ceredig R (2015) Isolation, selection and culture methods to enhance clonogenicity of mouse bone marrow derived mesenchymal stromal cell precursors. Stem Cell Res Ther. https://doi.org/10.1186/s13287-015-0139-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quan H, Kim SK, Heo SJ, Koak JY, Lee JH (2014) Optimization of growth inducing factors for colony forming and attachment of bone marrow-derived mesenchymal stem cells regarding bioengineering application. J Adv Prosthodontics 6:379–386

    Article  Google Scholar 

  27. Avwioro G (2011) Histochemical uses of haematoxylin—a review. J Pharma Clin Sci 1:24–34

    Google Scholar 

  28. Cho A, Suzuki S, Hatakeyama J, Haruyama N, Kulkarni AB (2010) A method for rapid demineralization of teeth and bones. Open Dent J 4:223–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  30. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  31. Cai YJ, Wang WS, Yang Y, Sun LH, Teitelbaum DH, Yang H (2013) Up-regulation of intestinal epithelial cell derived IL-7 expression by keratinocyte growth factor through STAT1/IRF-1, IRF-2 pathway. PLoS ONE 8:e58647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nadri S, Soleimani M, Hosseni RH, Massumi M, Atashi A, Izadpanah R (2007) An efficient method for isolation of murine bone marrow mesenchymal stem cells. Int J Dev Biol 51:723–729

    Article  CAS  PubMed  Google Scholar 

  33. Ooi YY, Rahmat Z, Jose S, Ramasamy R, Vidyadaran S (2013) Immunophenotype and differentiation capacity of bone marrow-derived mesenchymal stem cells from CBA/Ca, ICR and Balb/c mice. World J Stem Cells 5:34–42

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pleyer L, Valent P, Greil R (2016) Mesenchymal stem and progenitor cells in normal and dysplastic hematopoiesis-masters of survival and clonality? Int J Mol Sci. https://doi.org/10.3390/ijms17071009

    Article  PubMed  PubMed Central  Google Scholar 

  35. Anjos-Afonso F, Bonnet D (2008) Isolation, culture, and differentiation potential of mouse marrow stromal cells. Curr Protoc Stem Cell Biol 7:2B.3.1–2B.3.11. https://doi.org/10.1002/9780470151808.sc02b03s7

    Article  Google Scholar 

  36. Li H, Ghazanfari R, Zacharaki D, Lim HC, Scheding S (2016) Isolation and characterization of primary bone marrow mesenchymal stromal cells. Ann N Y Acad Sci 1370:109–118

    Article  CAS  PubMed  Google Scholar 

  37. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107:275–281

    Article  CAS  PubMed  Google Scholar 

  38. Pallavicini MG, Redfearn W, Necas E, Brecher G (1997) Rescue from lethal irradiation correlates with transplantation of 10–20 CFU-S-day 12. Blood Cells Mol Dis 23:157–168

    Article  CAS  PubMed  Google Scholar 

  39. Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, Wan M, Lei W, Armour M, Tryggestad E, Wong J, Wen CY, Lu WW, Frassica FJ (2011) Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci USA 108:1609–1614

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bruna F, Contador D, Conget P, Erranz B, Sossa CL, Arango-Rodríguez ML (2016) Regenerative potential of mesenchymal stromal cells: age-related changes. Stem cells Int. https://doi.org/10.1155/2016/1461648

    Article  PubMed  PubMed Central  Google Scholar 

  41. Han SK, Song JY, Yun YS, Yi SY (2002) Gamma irradiation-reduced IFN-gamma expression, STAT1 signals, and cell-mediated immunity. J Biochem Mol Biol 35:583–589

    CAS  PubMed  Google Scholar 

  42. Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP (2009) Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462:935–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pamment J, Ramsay E, Kelleher M, Dornan D, Ball KL (2002) Regulation of the IRF-1 tumour modifier during the response to genotoxic stress involves an ATM-dependent signalling pathway. Oncogene 21:7776–7785

    Article  CAS  PubMed  Google Scholar 

  44. Park SM, Chae M, Kim BK, Seo T, Jang IS, Choi JS, Kim IC, Lee JH, Park J (2010) SUMOylated IRF-1 shows oncogenic potential by mimicking IRF-2. Biochem Biophys Res Commun 391:926–930

    Article  CAS  PubMed  Google Scholar 

  45. Gupta M, Rath PC (2014) Interferon regulatory factor-1 (IRF-1) interacts with regulated in development and DNA damage response 2 (REDD2) in the cytoplasm of mouse bone marrow cells. Int J Biol Macromol 65:41–50

    Article  CAS  PubMed  Google Scholar 

  46. Han KJ, Jiang L, Shu HB (2008) Regulation of IRF2 transcriptional activity by its sumoylation. Biochem Biophys Res Commun 372:772–778

    Article  CAS  PubMed  Google Scholar 

  47. Park J, Kim K, Lee EJ, Seo YJ, Lim SN, Park K, Rho SB, Lee SH, Lee JH (2007) Elevated level of SUMOylated IRF-1 in tumor cells interferes with IRF-1-mediated apoptosis. Proc Natl Acad Sci USA 104:17028–17033

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial supports from the University Grants Commission (UGC)-Research Network Resource Centre (UGC-RNRC) and UGC-DRS as well as the Department of Science and Technology (DST)-FIST (DST-FIST) and DST-PURSE of the Government of India to the School of Life Sciences, J.N.U. and P.C.R., as well as the UGC-JRF & SRF fellowship to N.A. are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod C. Rath.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest related to this manuscript.

Ethical approval

All ethical principles and practice were strictly followed and adhered to with respect to both the experiments on the animals, and the scientific research and publication norms with respect to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahamad, N., Rath, P.C. Expression of interferon regulatory factors (IRF-1 and IRF-2) during radiation-induced damage and regeneration of bone marrow by transplantation in mouse. Mol Biol Rep 46, 551–567 (2019). https://doi.org/10.1007/s11033-018-4508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4508-x

Keywords

Navigation