Skip to main content
Log in

Hexosamine pathway regulates StarD7 expression in JEG-3 cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

StarD7 is a lipid binding protein involved in the delivery of phosphatidylcholine to the mitochondria whose promoter is activated by Wnt/β-catenin signaling. Although the majority of glucose enters glycolysis, ~ 2–5% of it can be metabolized via the hexosamine biosynthetic pathway (HBP). Considering that HBP has been implicated in the regulation of β-catenin we explored if changes in glucose levels modulate StarD7 expression by the HBP in trophoblast cells. We found an increase in StarD7 as well as in β-catenin expression following high-glucose (25 mM) treatment in JEG-3 cells; these effects were abolished in the presence of HBP inhibitors. Moreover, since HBP is able to promote unfolded protein response (UPR) the protein levels of GRP78, Ire1α, calnexin, p-eIF2α and total eIF2α as well as XBP1 mRNA was measured. Our results indicate that a diminution in glucose concentration leads to a decrease in StarD7 expression and an increase in the UPR markers: GRP78 and Ire1α. Conversely, an increase in glucose is associated to high StarD7 levels and low GRP78 expression, phospho-eIF2α and XBP1 splicing, although Ire1α remains high when cells are restored to high glucose. Taken together these findings indicate that glucose modulates StarD7 and β-catenin expression through the HBP associated to UPR, suggesting the existence of a link between UPR and HBP in trophoblast cells. This is the first study reporting the effects of glucose on StarD7 in trophoblast cells. These data highlight the importance to explore the role of StarD7 in placenta disorders related to nutrient availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AZA:

O-Diazoacetyl-l-serine

DON:

6-Diazo-5-oxo-l-norleucine

eIF2α:

Eukaryotic translation initiation factor 2 subunit 1α

ER:

Endoplasmic reticulum

FBS:

Fetal bovine serum

GFAT:

Glutamine fructose-6-phosphate amidotransferase

GlcNAc:

N-acetylglucosamine

GRP78:

Glucose regulated protein 78

HBP:

Hexosamine biosynthetic pathway

IRE1α:

Inositol-requiring enzyme 1

O-GlcNAc:

O-GlcNAcylation

OGT:

O-GlcNAc transferase

siRNA:

Small interfering RNA

StarD7:

StAR-related lipid transfer (START) domain containing 7

TBS:

Tris buffered saline

UDP-GlcNAc:

Uridine diphosphate N-acetylglucosamine

UPR:

Unfolding protein response.

References

  1. Efeyan A, Comb WC, Sabatini DM (2015) Nutrient-sensing mechanisms and pathways. Nature 517:302–310

    Article  CAS  Google Scholar 

  2. Denzel MS, Antebi A (2015) Hexosamine pathway and (ER) protein quality control. Curr Opin Cell Biol 33:14–18

    Article  CAS  Google Scholar 

  3. Hardiville S, Hart GW (2014) Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 20:208–213

    Article  CAS  Google Scholar 

  4. Hart GW, Housley MP, Slawson C (2007) Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446:1017–1022

    Article  CAS  Google Scholar 

  5. Taparra K, Tran PT, Zachara NE (2016) Hijacking the hexosamine biosynthetic pathway to promote EMT-mediated neoplastic phenotypes. Front Oncol 6:85

    Article  Google Scholar 

  6. Srinivasan V, Tatu U, Mohan V, Balasubramanyam M (2009) Molecular convergence of hexosamine biosynthetic pathway and ER stress leading to insulin resistance in L6 skeletal muscle cells. Mol Cell Biochem 328:217–224

    Article  CAS  Google Scholar 

  7. Sage AT, Walter LA, Shi Y, Khan MI, Kaneto H, Capretta A, Werstuck GH (2010) Hexosamine biosynthesis pathway flux promotes endoplasmic reticulum stress, lipid accumulation, and inflammatory gene expression in hepatic cells. Am J Physiol Endocrinol Metab 298:E499–E451

    Article  CAS  Google Scholar 

  8. Lai E, Teodoro T, Volchuk A (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 22:193–201

    CAS  Google Scholar 

  9. Durand S, Angeletti S, Genti-Raimondi S (2004) GTT1/StarD7, a novel phosphatidylcholine transfer protein-like highly expressed in gestational trophoblastic tumour: cloning and characterization. Placenta 25:37–44

    Article  CAS  Google Scholar 

  10. Angeletti S, Rena V, Nores R, Fretes R, Panzetta-Dutari GM, Genti-Raimondi S (2008) Expression and localization of StarD7 in trophoblast cells. Placenta 29:396–404

    Article  CAS  Google Scholar 

  11. Angeletti S, Sanchez JM, Chamley LW, Genti-Raimondi S, Perillo MA (2011) StarD7 behaves as a fusogenic protein in model and cell membrane bilayers. Biochim Biophys Acta 1818:425–433

    Article  Google Scholar 

  12. Flores-Martin J, Rena V, Angeletti S, Panzetta-Dutari GM, Genti-Raimondi S (2013) The lipid transfer protein StarD7: structure, function, and regulation. Int J Mol Sci 14:6170–6186

    Article  CAS  Google Scholar 

  13. Horibata Y, Sugimoto H (2010) StarD7 mediates the intracellular trafficking of phosphatidylcholine to mitochondria. J Biol Chem 285:7358–7365

    Article  CAS  Google Scholar 

  14. Saita S, Tatsuta T, Lampe PA, Konig T, Ohba Y, Langer T (2018) PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria. EMBO J 37:e97909

    Article  Google Scholar 

  15. Bockelmann S, Mina JGM, Korneev S, Hassan DG, Muller D, Hilderink A, Vlieg HC, Raijmakers R, Heck AJR, Haberkant P, Holthuis JCM (2018) A search for ceramide binding proteins using bifunctional lipid analogs yields CERT-related protein StarD7. J Lipid Res 59:515–530

    Article  CAS  Google Scholar 

  16. Flores-Martin J, Rena V, Marquez S, Panzetta-Dutari GM, Genti-Raimondi S (2012) StarD7 knockdown modulates ABCG2 expression, cell migration, proliferation, and differentiation of human choriocarcinoma JEG-3 cells. PLoS ONE 7:e44152

    Article  CAS  Google Scholar 

  17. Flores-Martin J, Reyna L, Ridano ME, Panzetta-Dutari GM, Genti-Raimondi S (2016) Suppression of StarD7 promotes endoplasmic reticulum stress and induces ROS production. Free Radic Biol Med 99:286–295

    Article  CAS  Google Scholar 

  18. Horibata Y, Ando H, Zhang P, Vergnes L, Aoyama C, Itoh M, Reue K, Sugimoto H (2016) StarD7 protein deficiency adversely affects the phosphatidylcholine composition, respiratory activity, and cristae structure of mitochondria. J Biol Chem 291:24880–24891

    Article  CAS  Google Scholar 

  19. Yang L, Na CL, Luo S, Wu D, Hogan S, Huang T, Weaver TE (2017) The phosphatidylcholine transfer protein Stard7 is required for mitochondrial and epithelial cell homeostasis. Sci Rep 7:46416

    Article  CAS  Google Scholar 

  20. Yang L, Lewkowich I, Apsley K, Fritz JM, Wills-Karp M, Weaver TE (2015) Haploinsufficiency for Stard7 is associated with enhanced allergic responses in lung and skin. J Immunol 194:5635–5643

    Article  CAS  Google Scholar 

  21. Ha JR, Hao L, Venkateswaran G, Huang YH, Garcia E, Persad S (2014) beta-catenin is O-GlcNAc glycosylated at Serine 23: implications for beta-catenin’s subcellular localization and transactivator function. Exp Cell Res 321:153–166

    Article  CAS  Google Scholar 

  22. Olivier-Van Stichelen S, Dehennaut V, Buzy A, Zachayus JL, Guinez C, Mir AM, El Yazidi-Belkoura I, Copin MC, Boureme D, Loyaux D, Ferrara P, Lefebvre T (2014) O-GlcNAcylation stabilizes beta-catenin through direct competition with phosphorylation at threonine 41. FASEB J 28:3325–3338

    Article  CAS  Google Scholar 

  23. Olivier-Van Stichelen S, Guinez C, Mir AM, Perez-Cervera Y, Liu C, Michalski JC, Lefebvre T (2012) The hexosamine biosynthetic pathway and O-GlcNAcylation drive the expression of beta-catenin and cell proliferation. Am J Physiol Endocrinol Metab 302:E417–E424

    Article  CAS  Google Scholar 

  24. Zhou F, Huo J, Liu Y, Liu H, Liu G, Chen Y, Chen B (2016) Elevated glucose levels impair the WNT/beta-catenin pathway via the activation of the hexosamine biosynthesis pathway in endometrial cancer. J Steroid Biochem Mol Biol 159:19–25

    Article  CAS  Google Scholar 

  25. Anagnostou SH, Shepherd PR (2008) Glucose induces an autocrine activation of the Wnt/beta-catenin pathway in macrophage cell lines. Biochem J 416:211–218

    Article  CAS  Google Scholar 

  26. Rena V, Flores-Martín J, Angeletti S, Panzetta-Dutari G, Genti-Raimondi S (2011) StarD7 gene expression in trophoblast cells: contribution of SF-1 and Wnt-b-catenin signalling. Mol Endocrinol 8:1364–1375

    Article  Google Scholar 

  27. van Schadewijk A, van’t Wout EF, Stolk J, Hiemstra PS (2012) A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell Stress Chaperones 17:275–279

    Article  CAS  Google Scholar 

  28. Litvak V, Shaul YD, Shulewitz M, Amarilio R, Carmon S, Lev S (2002) Targeting of Nir2 to lipid droplets is regulated by a specific threonine residue within its PI-transfer domain. Curr Biol 12:1513–1518

    Article  CAS  Google Scholar 

  29. Ferrer CM, Sodi VL, Reginato MJ (2016) O-GlcNAcylation in cancer biology: linking metabolism and signaling. J Mol Biol 428:3282–3294

    Article  CAS  Google Scholar 

  30. Hanover JA, Krause MW, Love DC (2010) The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta 1800:80–95

    Article  CAS  Google Scholar 

  31. Diaz P, Powell TL, Jansson T (2014) The role of placental nutrient sensing in maternal-fetal resource allocation. Biol Reprod 91:82

    Article  Google Scholar 

  32. Howerton CL, Bale TL (2014) Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction. Proc Natl Acad Sci USA 111:9639–9644

    Article  CAS  Google Scholar 

  33. Howerton CL, Morgan CP, Fischer DB, Bale TL (2013) O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci USA 110:5169–5174

    Article  CAS  Google Scholar 

  34. Pantaleon M, Steane SE, McMahon K, Cuffe JSM, Moritz KM (2017) Placental O-GlcNAc-transferase expression and interactions with the glucocorticoid receptor are sex specific and regulated by maternal corticosterone exposure in mice. Sci Rep 7:2017

    Article  Google Scholar 

  35. Zhang Q, Na Q, Song W (2017) Moderate mammalian target of rapamycin inhibition induces autophagy in HTR8/SVneo cells via O-linked beta-N-acetylglucosamine signaling. J Obstet Gynaecol Res 43:1585–1596

    Article  CAS  Google Scholar 

  36. Sethi JK, Vidal-Puig AJ (2008) Wnt signalling at the crossroads of nutritional regulation. Biochem J 416:e11–e13

    Article  CAS  Google Scholar 

  37. Rena V, Angeletti S, Panzetta-Dutari G, Genti-Raimondi S (2009) Activation of beta-catenin signalling increases StarD7 gene expression in JEG-3 cells. Placenta 30:876–883

    Article  CAS  Google Scholar 

  38. Deng RP, He X, Guo SJ, Liu WF, Tao Y, Tao SC (2014) Global identification of O-GlcNAc transferase (OGT) interactors by a human proteome microarray and the construction of an OGT interactome. Proteomics 14:1020–1030

    Article  CAS  Google Scholar 

  39. Zachara NE, Hart GW (2004) O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta 1673:13–28

    Article  CAS  Google Scholar 

  40. Sohn KC, Lee KY, Park JE, Do SI (2004) OGT functions as a catalytic chaperone under heat stress response: a unique defense role of OGT in hyperthermia. Biochem Biophys Res Commun 322:1045–1051

    Article  CAS  Google Scholar 

  41. Carvalho-Cruz P, Alisson-Silva F, Todeschini AR, Dias WB (2017) Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev Dyn 247:481–491

    Article  Google Scholar 

  42. Jang I, Kim HB, Seo H, Kim JY, Choi H, Yoo JS, Kim JW, Cho JW (2015) O-GlcNAcylation of eIF2alpha regulates the phospho-eIF2alpha-mediated ER stress response. Biochim Biophys Acta 1853:1860–1869

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Agencia Nacional de Promoción Ciencia y Técnica (FONCYT) PICT 2014-0806 and 2015-1781, and the Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SECyT-UNC). S.G-R. and G.M.P-D. are Career Investigators of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). J F-M, L-R, M-CDP and ML-R thank FONCYT and CONICET for her fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Genti-Raimondi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Martín, J., Reyna, L., Cruz Del Puerto, M. et al. Hexosamine pathway regulates StarD7 expression in JEG-3 cells. Mol Biol Rep 45, 2593–2600 (2018). https://doi.org/10.1007/s11033-018-4428-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4428-9

Keywords

Navigation