Skip to main content
Log in

Deubiquitinase Mysm1 regulates macrophage survival and polarization

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Macrophages play pivotal roles in innate and adaptive immune response, tissue homeostasis and cancer development. Their development and heterogeneity are tightly controlled by epigenetic program and transcription factors. Deubiquitinase Mysm1 plays crucial roles in regulating stem cell maintenance and immune cell development. Here we show that Mysm1 expression is up regulated during bone marrow macrophage development. Mysm1 deficient cells exhibit accelerating proliferation with more cells going to S phase and higher cyclin D1, cyclin D2 and c-Myc expression. However, compared to WT counterparts, more cell death is also detected in Mysm1 deficient cells no matter M-CSF deprived or not. In LPS-condition medium, Mysm1−/− macrophages show more pro-inflammatory factors IL-1β, TNFα and iNOS production. In addition, much higher expression of surface marker CD86 is detected in Mysm1−/− macrophages. In vivo tumor model data demonstrate that in contrast to WT macrophages promoting tumor growth, Mysm1−/− macrophages inhibit tumor growth, showing the properties of M1 macrophages. Collectively, these data indicate that Mysm1 is essential for macrophage survival and plays an important role in macrophage polarization and might be a target for cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483. https://doi.org/10.1146/annurev.immunol.021908.132532

    Article  CAS  PubMed  Google Scholar 

  2. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. https://doi.org/10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-assocaiated macrophages as a paradigm for polarized M2 monnonuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  4. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35

    Article  CAS  PubMed  Google Scholar 

  5. Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739

    Article  CAS  PubMed  Google Scholar 

  6. Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, Hainzl A, Schatz S, Qi Y, Schlecht A, Weiss JM, Wlaschek M, Sunderkötter C, Scharffetter-Kochanek K (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121(3):985–997. https://doi.org/10.1172/JCI44490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Enderlin Vaz da Silva Z, Lehr HA, Velin D (2014) In vitro and in vivo repair activities of undifferentiated and classically and alternatively activated macrophages. Pathobiology 81(2):86–93. https://doi.org/10.1159/000357306

    Article  PubMed  Google Scholar 

  8. Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y, Movahedi K, Houbracken I, Schouppe E, Elkrim Y, Karroum O, Jordan B, Carmeliet P, Gysemans C, De Baetselier P, Mazzone M, Van Ginderachter JA (2014) Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage. Cancer Res 74(1):24–30. https://doi.org/10.1158/0008-5472.CAN-13-1196

    Article  CAS  PubMed  Google Scholar 

  9. Munitz A, Brandt EB, Mingler M, Finkelman FD, Rothenberg ME (2008) Distinct roles IL-13 for and IL-4 via IL-13 receptor alpha1 and the type II IL-4 receptor in asthma pathogenesis. Proc Natl Acad Sci USA 105(20):7240–7245. https://doi.org/10.1073/pnas.0802465105

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727

    Article  CAS  PubMed  Google Scholar 

  11. Hallowell RW, Collins SL, Craig JM, Zhang Y, Oh M, Illei PB, Chan-Li Y, Vigeland CL, Mitzner W, Scott AL, Powell JD, Horton MR (2017) mTORC2 signaling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis. Nat Commun 8:14208. https://doi.org/10.1038/ncomms14208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11(11):750–761. https://doi.org/10.1038/nri3088

    Article  CAS  PubMed  Google Scholar 

  13. Zhou D, Yang K, Chen L, Zhang W, Xu Z, Zuo J, Jiang H, Luan J (2017) Promising landscape macrophage polarization: epigenetic viewpoint. Oncotarget 8(34):57693–57706. https://doi.org/10.18632/oncotarget.17027

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bermick JR, Lambrecht NJ, denDekker AD, Kunkel SL, Lukacs NW, Hogaboam CM, Schaller MA (2016) Neonatal monocytes exhibit a unique histone modification landscape. Clin Epigenetics 8:99. https://doi.org/10.1186/s13148-016-0265-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W, Zhao K (2009) Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4(1):80–93. https://doi.org/10.1016/j.stem.2008.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steffen PA, Ringrose L (2014) What are memories made of? How Polycomb and Trithorax proteins mediate epigeneticmemory. Nat Rev Mol Cell Biol 15(5):340–356. https://doi.org/10.1038/nrm3789

    Article  CAS  PubMed  Google Scholar 

  17. Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N, Janssen-Megens EM, Ter Huurne M, Mandoli A, van Schaik T, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, van der Meer JW, Joosten LA, Wijmenga C, Martens JH, Xavier RJ, Logie C, Netea MG, Stunnenberg HG (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345(6204):1251086. https://doi.org/10.1126/science.1251086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, Honma K, Matsuyama T, Yui K, Tsujimura T, Standley DM, Nakanishi K, Nakai K, Akira S (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11(10):936–944. https://doi.org/10.1038/ni.1920

    Article  CAS  PubMed  Google Scholar 

  19. Mullican SE, Gaddis CA, Alenghat T, Nair MG, Giacomin PR, Everett LJ, Feng D, Steger DJ, Schug J, Artis D, Lazar MA (2011) Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev 25(23):2480–2488. https://doi.org/10.1101/gad.175950.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu P, Zhou W, Wang J, Puc J, Ohgi KA, Erdjument-Bromage H, Tempst P, Glass CK, Rosenfeld MG (2007) A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol Cell 27(4):609–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nijnik A, Clare S, Hale C, Raisen C, McIntyre RE, Yusa K, Everitt AR, Mottram L, Podrini C, Lucas M, Estabel J, Goulding D, Sanger Institute Microarray Facility; Sanger Mouse Genetics Project, Adams N, Ramirez-Solis R, White JK, Adams DJ, Hancock RE, Dougan G (2012) The critical role of histone H2A-deubiquitinase Mysm1 in hematopoiesis and lymphocyte differentiation. Blood 119(6):1370–1379. https://doi.org/10.1182/blood-2011-05-352666

    Article  CAS  PubMed  Google Scholar 

  22. Wang T, Nandakumar V, Jiang XX, Jones L, Yang AG, Huang XF, Chen SY (2013) The control of hematopoietic stem cell maintenance, self-renewal, and differentiation by Mysm1-mediated epigenetic regulation. Blood 122(16):2812–2822. https://doi.org/10.1182/blood-2013-03-489641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li P, Yang YM, Sanchez S, Cui DC, Dang RJ, Wang XY, Lin QX, Wang Y, Wang C, Chen DF, Chen SY, Jiang XX, Wen N (2016) Deubiquitinase MYSM1 is essential for normal bone formation and mesenchymal stem cell differentiation. Sci Rep 6:22211. https://doi.org/10.1038/srep22211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang XX, Nguyen Q, Chou Y, Wang T, Nandakumar V, Yates P, Jones L, Wang L, Won H, Lee HR, Jung JU, Müschen M, Huang XF, Chen SY (2011) Control of B cell development by the histone H2A deubiquitinase MYSM1. Immunity 35(6):883–896. https://doi.org/10.1016/j.immuni.2011.11.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nandakumar V, Chou Y, Zang L, Huang XF, Chen SY (2013) Epigenetic control of natural killer cell maturation by histone H2A deubiquitinase, MYSM1. Proc Natl Acad Sci USA 110(41):E3927–E3936. https://doi.org/10.1073/pnas.1308888110

    Article  Google Scholar 

  26. Huang XF, Nandakumar V, Tumurkhuu G, Wang T, Jiang X, Hong B, Jones L, Won H, Yoshii H, Ozato K, Masumi A, Chen SY (2016) Mysm1 is required for interferon regulatory factor expression in maintaining HSC quiescence and thymocyte development. Cell Death Dis 7(6):e2260. https://doi.org/10.1038/cddis.2016.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Panda S, Nilsson JA, Gekara NO (2015) Deubiquitinase MYSM1 regulates innate immunity through inactivation of TRAF3 and TRAF6 complexes. Immunity 43(4):647–659. https://doi.org/10.1016/j.immuni.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  28. Jiang XX, Liu Y, Li H, Gao Y, Mu R, Guo J, Zhang J, Yang YM, Xiao F, Liu B, Wang C, Shen B, Chen SY, Li Z, Yang G (2016) MYSM1/miR-150/FLT3 inhibits B1a cell proliferation. Oncotarget 7(42):68086–68096. https://doi.org/10.18632/oncotarget.11738

    Article  PubMed  PubMed Central  Google Scholar 

  29. Belle JI, Langlais D, Petrov JC, Pardo M, Jones RG, Gros P, Nijnik A (2015) p53 mediates loss of hematopoietic stem cell function and lymphopenia in Mysm1 deficiency. Blood 125(15):2344–2348. https://doi.org/10.1182/blood-2014-05-574111

    Article  CAS  PubMed  Google Scholar 

  30. Gatzka M, Tasdogan A, Hainzl A, Allies G, Maity P, Wilms C, Wlaschek M, Scharffetter-Kochanek K (2015) Interplay of H2A deubiquitinase 2A-DUB/Mysm1 and the p19(ARF)/p53 axis in hematopoiesis, early T-cell development and tissue differentiation. Cell Death Differ 22(9):1451–1462. https://doi.org/10.1038/cdd.2014.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang XX, Chou Y, Jones L, Wang T, Sanchez S, Huang XF, Zhang L, Wang C, Chen SY (2015) Epigenetic regulation of antibody responses by the histone H2A deubiquitinase MYSM1. Sci Rep 5:13755. https://doi.org/10.1038/srep13755

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhang L, Wang Y, Xiao F, Wang S, Xing G, Li Y, Yin X, Lu K, Wei R, Fan J, Chen Y, Li T, Xie P, Yuan L, Song L, Ma L, Ding L, He F, Zhang L (2014) CKIP-1 regulates macrophage proliferation by inhibiting TRAF6-mediated Akt activation. Cell Res 24(6):742–761. https://doi.org/10.1038/cr.2014.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gross TJ, Kremens K, Powers LS, Brink B, Knutson T, Domann FE, Philibert RA, Milhem MM, Monick MM (2014) Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. J Immunol 192(5):2326–2338. https://doi.org/10.4049/jimmunol.1301758

    Article  CAS  PubMed  Google Scholar 

  34. Rai MN, Balusu S, Gorityala N, Dandu L, Kaur R (2012) Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. PLoS Pathog 8(8):e1002863. https://doi.org/10.1371/journal.ppat.1002863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liao WT, Lu JH, Wang WT, Hung CH, Sheu CC, Huang SK (2017) Epigenetic synergism between interleukin-4 and aryl-hydrocarbon receptor in human macrophages. J Mol Med (Berlin) 95(4):395–404. https://doi.org/10.1007/s00109-016-1493-1

    Article  CAS  Google Scholar 

  36. Xu G, Liu G, Xiong S, Liu H, Chen X, Zheng B (2015) The histone methyltransferase Smyd2 is a negative regulator of macrophage activation by suppressing interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) production. J Biol Chem 290(9):5414–5423. https://doi.org/10.1074/jbc.M114.610345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Lindsey Jones and Dr. Andrew Woodham for their critical review of this manuscript. This study was financially supported by Beijing Natural Science Foundation (No. 7162142), Program of International Scientific and Technological Cooperation and Exchanges of China (No. 31320103914), National Key Research and Development Program (No. 2016YFC1101303, No. 2017YFA0106100), National Natural Science Foundation of China (No. 81771998, No. 81622027, No. U1601221).

Author information

Authors and Affiliations

Authors

Contributions

XXJ and CW conceived and designed the experiments. XZ, XHH, XHD, YHW and HXY performed the experiments. XZ, XHH, XHD, YHW, HXY YW, YH, SL, JZ, XXJ and CW analyzed the data. XXJ and CW contributed reagents, materials and analysis tools. XXJ and CW wrote this manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Changyong Wang or Xiao-Xia Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All animal protocols for the present study are in accordance with the national guidelines for use of animals in scientific research. Additional approval was granted by the Animal Care and Use Committee of Academy of Military Medical Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Huang, XH., Dong, XH. et al. Deubiquitinase Mysm1 regulates macrophage survival and polarization. Mol Biol Rep 45, 2393–2401 (2018). https://doi.org/10.1007/s11033-018-4405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4405-3

Keywords

Navigation