Skip to main content

Advertisement

Log in

Chromogenic media for MRSA diagnostics

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

For the past decade, a number of chromogenic media for methicillin-resistance Staphylococcus aureus (MRSA) detection have been developed and applied, including Oxoid Brilliance™ MRSA, CHROMagar™ MRSA, BBL™ CHROMagar™ MRSA, MRSASelect and chromID MRSA. The advantages of these chromogenic media offers direct detection of visible staphylococcal colonies, coupled with the use of chromogenic enzymatic substrates that can be hydrolyzed by S. aureus to confirm species or strain identification. BBL™ CHROMagar™ MRSA and MRSASelect are designed for detection of nasal colonization by MRSA, while CHROMagar™ MRSA, Oxoid Brilliance™ MRSA and chromID MRSA are readily applied in bacterial screening. This review summarizes the characteristics, principles and capacities of these selective media, and focuses on comparison of different chromogenic media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Duerden BI (2012) MRSA: why have we got it and can we do anything about it. Eye (Lond) 26:218–221

    Article  CAS  Google Scholar 

  2. Samra Z, Ofir O, Bahar J (2004) Optimal detection of Saphylococcus aureus from clinical specimens using a new chromogenic medium. Diagn Microbiol Infect Dis 49:243–247

    Article  CAS  PubMed  Google Scholar 

  3. Alonzo F III, Torres VJ (2013) A lesson in surival: S. aureus versus the skin. Cell Host Microbe 13:3–5

    Article  CAS  PubMed  Google Scholar 

  4. Liu GY (2009) Molecular pathogensis of Staphylococcus aureus infection. Prediatr Res 65:71R–77R

    Article  Google Scholar 

  5. Collins J, Rudkin J, Recker M, Pozzi C, O’Gara JP et al (2010) Offsetting virulence and antibiotic resistance costs by MRSA. ISME J 4:557–584

    Article  Google Scholar 

  6. Prosper M, Veras N, Azarian T, Rathore M, Nolan D et al (2013) Molecular epidemiology of community-assicuated methicillin-resistant Staphylococcus aureus in the genomic era: a cross-sectional study. Sci Rep 3:1–8

    Google Scholar 

  7. Pateerson GK, Harrison EW, Holmes MA (2014) The emergence of mecC methicillin-resistant Stapylococcus aureus. Trends Microbiol 22:42–47

    Article  Google Scholar 

  8. van Hal SJ, Jemsem SO, Vaska VL, Espedido BA, Paterson DL (2012) Predictors of mortality in Staphylcoccus aureus bacteremia. Clin Microbiol Rev 25:362–386

    Article  PubMed  PubMed Central  Google Scholar 

  9. Otto M (2014) Staphylococcus aureus toxins. Curr Opin Microbiol 17:32–37

    Article  CAS  PubMed  Google Scholar 

  10. Feng Y, Chen CJ, Su LH, Hu S, Yu J et al (2008) Evolution and pathogenesis of Staphylococcus aureus: lessons larned from genotyping and comparative genomics. FEMS Microbiol Rev 32:23–37

    Article  CAS  PubMed  Google Scholar 

  11. Lyon BR, Skurray R (1987) Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88–134

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chambers HF (1988) Methicillin-resistant staphylococci. Clin Microbiol Rev 1:173–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roemer T, Schneider T, Pinho MG (2013) Auxiliary factors: a chink in the armor of MRSA resistance to β-lactam antibiotics. Curr Opin Microbiol 16:538–548

    Article  CAS  PubMed  Google Scholar 

  14. Zapun A, Contereas-Martel C, Vernet T (2008) Penicillin-bingding proteins and β-lactam resistance. FEMS Microbiol Rev 32:361–385

    Article  CAS  PubMed  Google Scholar 

  15. David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23:616–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fitzgerald JR (2012) Livestock-associated Staphylococcus aureus: origin evolution and public health threat. Trends Microbiol 20:192–198

    Article  CAS  PubMed  Google Scholar 

  17. Huang H, Flynn NM, King JH, Monchaud C et al (2006) Comparisons of community-associated methicillin-resistant Staphylococcus aureus (MRSA) and hospital-associated MRSA infections in Sacramento, California. J Clin Microbiol 44:2423–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Riedel S, Dam L, Stamper PD, Shah SA, Carroll KC (2010) Evaluation of bio-rad MRSASelect agar for detection of methicillin-resistant Staphylococcus aureus directly from blood cultures. J Clin Microbiol 48:2285–2288

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lindsay JA, Holden MTG (2004) Staphylococcus aureus: superbug, super genome? Trends Microbiol 12:378–385

    Article  CAS  PubMed  Google Scholar 

  20. Chopra S, Harjai K, Chhibber S (2015) Antibiotic susceptibility of ica-positive and ica-negative MRSA in different phases of biofilm growth. J Antibiotics 68:15–22

    Article  CAS  Google Scholar 

  21. Merlino J, Watson J, Funnell G, Gottlieb T, Bradbury R, Harbour C (2002) New screening medium for detection and identification of methicillin/oxacillin-resistant Staphylococcus aureus for nosocomial surveillance. Eur J Clin Microbiol Infect Dis 21:414–416

    Article  CAS  PubMed  Google Scholar 

  22. Verkade E, Elberts S, Verhulst C, Kluytmans J (2009) Performance of oxoid brilliance MRSA medium for detection of methicillin-resistant Staphylococcus aureus: an in vitro study. Eur J Clin Microbiol Infect Dis 28:1443–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han Z, Lautenbach E, Fishman N, Nachamkin I (2007) Evaluation of mannitol salt agar, CHROMagar staph aureus and CHROMagar MRSA for detection of meticillin-resistant Staphylococcus aureus from nasal swab specimens. J Med Microbiol 56:43–46

    Article  PubMed  Google Scholar 

  24. Veenemans J, Verhulst C, Punselie R, van Keulen PH, Kluytmans JA (2013) Evaluation of brilliance MRSA 2 agar for detection of methicillin-resistant Staphylococcus aureus in clinical samples. J Clin Microbiol 51:1026–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Diederen B, van Duijn I, van Belkum A, Willemse P, van Keulen P et al (2005) Performance of CHROMagar MRSA medium for detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:1925–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nahimana I, Francioli P, Blanc DS (2006) Evaluation of three chromogenic media (MRSA-ID, MRSA-Select and CHROMagar MRSA) and ORSAB for surveillance cultures of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 12:1168–1174

    Article  CAS  PubMed  Google Scholar 

  27. Compernolle V, Verschraegen G, Claeys G (2007) Combined use of pastorex staph-plus and either of two new chromogenic agars, MRSA ID and CHROMagar MRSA, for detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 45:154–158

    Article  CAS  PubMed  Google Scholar 

  28. Flayhart D, Hindler JF, Bruckner DA, Hall G, Shrestha RK et al (2005) Multicenter evaluation of BBL CHROMagar MRSA medium for direct detection of methicillin-resistant Staphylococcus aureus from surveillance cultures of the anterior nares. J Clin Microbiol 43:5536–5540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van VK, Cartuyvels R, Coppens G, Frans J, Van AM (2010) Performance of a new chromogenic medium, BBL CHROMagar MRSA II (BD), for detection of methicillin-resistant Staphylococcus aureus in screening samples. J Clin Microbiol 48:1450–1451

    Article  Google Scholar 

  30. Pape J, Wadlin J, Nachamkin I (2006) Use of BBL CHROMagar MRSA medium for identification of methicillin-resistant Staphylococcus aureus directly from blood cultures. J Clin Microbiol 44:2575–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wendt C, Havill NL, Chapin KC, Boyce JM, Dickenson R et al (2010) Evaluation of a new selective medium, BD BBL CHROMagar MRSA II, for detection of methicillin-resistant Staphylococcus aureus in different specimens. J Clin Microbiol 48:2223–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Louie L, Soares D, Meaney H, Vearncombe M, Simor AE (2006) Evaluation of a new chromogenic medium, MRSASelect, for detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 44:4561–4563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nsira SB, Dupuis M, Leclercq R (2006) Evaluation of MRSASelect, a new chromogenic medium for the detection of nasal carriage of methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 27:561–564

    Article  PubMed  Google Scholar 

  34. van Loo IHM, van DS, Verbakel-Schelle IA, Buiting AG (2007) Evaluation of a chromogenic agar (MRSASelect) for the detection of meticillin-resistant Staphylococcus aureus with clinical samples in The Netherlands. J Clin Microbiol 56(4):491–494

    Google Scholar 

  35. Diederen BM, van Leest ML, van Duijn I, Willemse P, van Keulen PH et al (2006) Performance of MRSA ID, a new chromogenic medium for detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 44:586–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perry JD, Davies A, Butterworth LA, Hopley AL, Nicholson A et al (2004) Development and evaluation of a chromogenic agar medium for methicillin-resistant Staphylococcus aureus. J Clin Microbiol 42:4519–4523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Micheel V, Hogan B, Koller T, Warnke P, Crusius S et al (2015) Screening agars for MRSA: evaluation of a stepwise diagnostic approach with two different selective agars for the screening for methicillin-resistant Staphylococcus aureus (MRSA). Mil Med Res 2:1–8

    Article  Google Scholar 

  38. Denys GA, Renzi PB, Koch KM, Wissel CM (2013) Three-way comparison of BBL CHROMagar MRSA II, MRSASelect, and spectra MRSA for detection of methicillin-resistant Staphylococcus aureus isolates in nasal surveillance cultures. J Clin Microbiol 51:202–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stoakes L, Reyes R, Daniel J, Lennox G, John MR (2006) Prospective comparison of a new chromogenic medium, MRSASelect, to CHROMagar MRSA and mannitol-salt medium supplemented with oxacillin or cefoxitin for detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 44:637–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Malhotra-Kumar S, Abrahantes JC, Sabiiti W, Lammens C, Vercauteren G et al (2010) Evaluation of chromogenic media for detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 48:1040–1046

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yamada K, Ohkura T, Okamoto A, Ohta M, Inuzuka K et al (2010) Evaluation of selection media for the detection of borderline MRSA. J Infect Chemother 16:19–24

    Article  PubMed  Google Scholar 

  42. Nonhoff C, Denis O, Brenner A, Buidin P, Legros N et al (2009) Comparison of three chromogenic media and enrichment broth media for the detection of methicillin-resistant Staphylococcus aureus from mucocutaneous screening specimens: comparison of MRSA chromogenic media. Eur J Clin Microbiol Infect Dis 28:363–369

    Article  CAS  PubMed  Google Scholar 

  43. Lagace-Wiens P, Alfa M, Manickam K, Harding GK (2008) Reductions in workload and reporting time by use of methicillin-resistant Staphylococcus aureus screening with MRSASelect medium compared to mannitol-salt medium supplemented with oxacillin. J Clin Microbiol 46:1174–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Faron ML, Buchan BW, Vismara C, Lacchini C, Bielli A et al (2016) Automated scoring of chromogenic media for detection of methicillin-resistant Staphylococcus aureus by use of WASPLab image analysis software. J Clin Microbiol 54:620–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National 973-Plan of China (2012CB720800), National Natural Science Foundation of China (31201362 & 31101278), International Science & Technology Cooperation Program (2013B051000014), National Outstanding Doctoral Dissertation Funding (201459), Guangdong Outstanding Doctoral Dissertation Funding (K3140030), Open Project Program of State Key Laboratory of Food Science and Technology, Jiangnan University (SKLF-KF-201513) and Open Project Program of Key Laboratory for Green Chemical Process of Ministry of Education in Wuhan Institute of Technology (GCP201506).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenbo Xu or Dingqiang Chen.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Hou, Y., Peters, B.M. et al. Chromogenic media for MRSA diagnostics. Mol Biol Rep 43, 1205–1212 (2016). https://doi.org/10.1007/s11033-016-4062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4062-3

Keywords

Navigation