Skip to main content
Log in

Attenuation of cellular toxicity by calpain inhibitor induced by bacterial endotoxin: a mechanistic study using muscle precursor cells as a model system

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This investigation was under taken to explore probable mechanisms and signal pathways involved in cytotoxicity induced by bacterial endotoxin lipopolysaccharide (LPS). Herein, we selected muscle precursor C2C12 myoblasts as representative cells to test effect of calpain inhibitor 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) on LPS induced inflammation and apoptosis. In order to rule out the toxicity of endotoxin, mouse myoblasts were exposed to various concentrations of LPS and viability of cells and morphology were assessed using CCK-8 assay and simple microscopy respectively. Apoptotic cell death was examined by fluorescence microscope at regular time intervals. Additionally, LPS induced apoptosis in C2C12 cells were determined by mRNA expression of µ-calpain, caspase-3 and tumor necrosis factor alpha (TNF-α) and were quantified by qRT-PCR. Our results point out that LPS stimulation produced dose dependent toxicity in muscle precursor cells. Pre-treatment with a calpain inhibitor can significantly attenuate LPS-induced inflammation/apoptosis. Results of present research determined that mRNA expression of aforesaid genes was amplified (p < 0.05) in LPS stimulated C2C12 cells, whereas a noticeable drop off in mRNA expression of these genes was observed when pre-exposed with calpain inhibitor PD150606. Our study has outlined the current understanding regarding the connection between µ-calpain and caspase-3 in skeletal muscle wasting and as a result provides suitable choice for designing promising chemotherapeutic system for muscle illness and atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme1

Similar content being viewed by others

References

  1. Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med 86(10):1113–1126. doi:10.1007/s00109-008-0373-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ventadour S, Attaix D (2006) Mechanisms of skeletal muscle atrophy. Curr Opin Rheumatol 18(6):631–635. doi:10.1097/01.bor.0000245731.25383.de

    Article  CAS  PubMed  Google Scholar 

  3. Eley HL, Tisdale MJ (2007) Skeletal muscle atrophy, a link between depression of protein synthesis and increase in degradation. J Biol Chem 282(10):7087–7097. doi:10.1074/jbc.M610378200

    Article  CAS  PubMed  Google Scholar 

  4. Callahan LA, Supinski GS (2009) Sepsis-induced myopathy. Crit Care Med 37(10):S354–S367. doi:10.1097/CCM.0b013e3181b6e439

    Article  PubMed Central  PubMed  Google Scholar 

  5. Nozaki K, Das A, Ray SK, Banik NL (2010) Calpain inhibition attenuates intracellular changes in muscle cells in response to extracellular inflammatory stimulation. Exp Neurol 225(2):430–435. doi:10.1016/j.expneurol.2010.07.021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sharifi AM, Hoda FE, Noor AM (2010) Studying the effect of LPS on cytotoxicity and apoptosis in PC12 neuronal cells: role of Bax, Bcl-2, and Caspase-3 protein expression. Toxicol Mech Methods 20(6):316–320. doi:10.3109/15376516.2010.486420

    Article  CAS  PubMed  Google Scholar 

  7. Frost RA, Nystrom GJ, Lang CH (2002) Lipopolysaccharide regulates proinflammatory cytokine expression in mouse myoblasts and skeletal muscle. Am J Physiol Regul Integr Comp Physiol 283(3):R698–R709. doi:10.1152/ajpregu.00039.2002

    Article  CAS  PubMed  Google Scholar 

  8. Frost RA, Nystrom GJ, Lang CH (2004) Lipopolysaccharide stimulates nitric oxide synthase-2 expression in murine skeletal muscle and C2C12 myoblasts via Toll-like receptor-4 and c-Jun NH2-terminal kinase pathways. Am J Physiol Cell Physiol 287(6):C1605–C1615. doi:10.1152/ajpcell.00010.2004

    Article  CAS  PubMed  Google Scholar 

  9. Jortay J, Senou M, Delaigle A, Noel L, Funahashi T, Maeda N, Many MC, Brichard SM (2010) Local induction of adiponectin reduces lipopolysaccharide-triggered skeletal muscle damage. Endocrinology 151(10):4840–4851. doi:10.1210/en.2009-1462

    Article  CAS  PubMed  Google Scholar 

  10. Smith IJ, Lecker SH, Hasselgren P-O (2008) Calpain activity and muscle wasting in sepsis. Am J Physiol-Endoc M 295(4):E762–E771. doi:10.1152/ajpendo.90226.2008

    CAS  Google Scholar 

  11. Tissier S, Lancel S, Marechal X, Mordon S, Depontieu F, Scherpereel A, Chopin C, Neviere R (2004) Calpain inhibitors improve myocardial dysfunction and inflammation induced by endotoxin in rats. Shock 21(4):352–357. doi:10.1097/00024382-200404000-00010

    Article  CAS  PubMed  Google Scholar 

  12. Pollack JR, Witt RC and Sugimoto JT (2003) Differential effects of calpain inhibitors on hypertrophy of cardiomyocytes. Biochem Hypertrophy Heart Fail 47–50. doi: 10.1023/A:1025413428259

  13. Chatterjee PK, Todorovic Z, Sivarajah A, Mota-Filipe H, Brown PA, Stewart KN, Mazzon E, Cuzzocrea S, Thiemermann C (2005) Inhibitors of calpain activation (PD150606 and E-64) and renal ischemia-reperfusion injury. Biochem Pharmacol 69(7):1121–1131. doi:10.1016/j.bcp.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  14. Del Bello B, Moretti D, Gamberucci A, Maellaro E (2007) Cross-talk between calpain and caspase-3/-7 in cisplatin-induced apoptosis of melanoma cells: a major role of calpain inhibition in cell death protection and p53 status. Oncogene 26(19):2717–2726. doi:10.1038/sj.onc.1210079

    Article  PubMed  Google Scholar 

  15. Ali MA, Stepanko A, Fan X, Holt A, Schulz R (2012) Calpain inhibitors exhibit matrix metalloproteinase-2 inhibitory activity. Biochem Biophys Res Commun 423(1):1–5. doi:10.1016/j.bbrc.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  16. Li X, Luo R, Jiang R, Meng X, Wu X, Zhang S, Hua W (2013) The role of the Hsp90/Akt pathway in myocardial calpain-induced caspase-3 activation and apoptosis during sepsis. BMC Cardiovasc Disord 13:8. doi:10.1186/1471-2261-13-8

    Article  PubMed Central  PubMed  Google Scholar 

  17. Li X, Luo R, Chen R, Song L, Zhang S, Hua W, Chen H (2014) Cleavage of IkappaBalpha by calpain induces myocardial NF-kappaB activation, TNF-alpha expression, and cardiac dysfunction in septic mice. Am J Physiol Heart Circ Physiol 306(6):H833–H843. doi:10.1152/ajpheart.00893.2012

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Li Y, Shan L, Shen E, Chen R, Peng T (2009) Over-expression of calpastatin inhibits calpain activation and attenuates myocardial dysfunction during endotoxaemia. Cardiovasc Res 83(1):72–79. doi:10.1093/cvr/cvp100

    Article  CAS  PubMed  Google Scholar 

  19. Xiaoping L, Rong L, Ruizhen C, Lang L (2011) Calpain induces TNF-α expression and cardiac dysfunction by IκB/NF-κB system in septic mice. Heart 97(Suppl 3):A132. doi:10.1136/heartjnl-2011-300867.383

    Article  Google Scholar 

  20. Amna T, Hassan MS, Sheikh FA, Lee HK, Seo KS, Yoon D, Hwang IH (2013) Zinc oxide-doped poly (urethane) spider web nanofibrous scaffold via one-step electrospinning: a novel matrix for tissue engineering. Appl Microbiol Biotechnol 97(4):1725–1734. doi:10.1007/s00253-012-4353-0

    Article  CAS  PubMed  Google Scholar 

  21. Russell ST, Tisdale MJ (2009) Mechanism of attenuation by beta-hydroxy-beta-methylbutyrate of muscle protein degradation induced by lipopolysaccharide. Mol Cell Biochem 330(1–2):171–179. doi:10.1007/s11010-009-0130-5

    Article  CAS  PubMed  Google Scholar 

  22. Amna T, Hassan MS, Shin WS, Van Ba H, Lee HK, Khil MS, Hwang IH (2013) TiO2 nanorods via one-step electrospinning technique: a novel nanomatrix for mouse myoblasts adhesion and propagation. Colloid Surf B 101(1):424–429. doi:10.1016/j.colsurfb.2012.06.012

    Article  CAS  Google Scholar 

  23. Amna T, Van Ba H, Vaseem M, Hassan MS, Khil MS, Hahn YB, Lee HK, Hwang IH (2013) Apoptosis induced by copper oxide quantum dots in cultured C2C12 cells via caspase 3 and caspase 7: a study on cytotoxicity assessment. Appl Microbiol Biotechnol 97(12):5545–5553. doi:10.1007/s00253-013-4724-1

    Article  CAS  PubMed  Google Scholar 

  24. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(900):2002–2007. doi:10.1093/nar/29.9.e45

    Google Scholar 

  25. Eley Helen L, Russell Steven T, Tisdale MJ (2008) Mechanism of attenuation of muscle protein degradation induced by tumor necrosis factor-α and angiotensin II by β-hydroxy-β-methylbutyrate. Am J Physiol Endocrinol Metab 295(6):E1417–E1426. doi:10.1152/ajpendo.90567.2008

    Article  CAS  PubMed  Google Scholar 

  26. Huang J, Forsberg NE (1998) Role of calpain in skeletal-muscle protein degradation. Proc Natl Acad Sci 95:12100–12105. doi:10.1073/pnas.95.21.12100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270(5639):725–727. doi:10.1038/270725a0

    Article  CAS  PubMed  Google Scholar 

  28. Lee JW, Bae CJ, Choi YJ, Kim SI, Kwon YS, Lee HJ, Kim SS, Chun W (2014) 3,4,5-Trihydroxycinnamic acid inhibits lipopolysaccharide (LPS)-induced inflammation by Nrf2 activation in vitro and improves survival of mice in LPS-induced endotoxemia model in vivo. Mol Cell Biochem 390(1–2):143–153. doi:10.1007/s11010-014-1965-y

    Article  CAS  PubMed  Google Scholar 

  29. Supinski GS, Callahan LA (2007) Free radical-mediated skeletal muscle dysfunction in inflammatory conditions. J Appl Physiol 102(5):2056–2063. doi:10.1152/japplphysiol.01138.2006

    Article  CAS  PubMed  Google Scholar 

  30. Van Ba H, Inho H (2013) Significant role of mu-calpain (CANP1) in proliferation/survival of bovine skeletal muscle satellite cells. Vitro Cell Dev Biol Anim 49(10):785–797. doi:10.1007/s11626-013-9666-5

    Article  Google Scholar 

  31. Supinski GS, Wang W, Callahan LA (2009) Caspase and calpain activation both contribute to sepsis-induced diaphragmatic weakness. J Appl Physiol 107(5):1389–1396. doi:10.1152/japplphysiol.00341.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Nozaki K, Das A, Ray SK, Banik NL (2011) Calpeptin attenuated apoptosis and intracellular inflammatory changes in muscle cells. J Neurosci Res 89(4):536–543. doi:10.1002/jnr.22585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Talbert EE, Smuder AJ, Min K, Kwon O-S, Powers SK (2012) Inhibition of calpain or caspase-3 protects against immobilization-induced muscle atrophy. FASEB J 26(10):75–77

    Google Scholar 

  34. Talbert EE, Smuder AJ, Min K, Kwon OS, Powers SK (2013) Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy. J Appl Physiol 114(10):1482–1489. doi:10.1152/japplphysiol.00925.2012

    Article  CAS  PubMed  Google Scholar 

  35. Nelson WB, Smuder AJ, Hudson MB, Talbert EE, Powers SK (2012) Cross-talk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit Care Med 40(6):1857–1863. doi:10.1097/CCM.0b013e318246bb5d

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Mohanty TR, Park KM, Pramod AB, Kim JH, Choe HS, Hwang IH (2010) Molecular and biological factors affecting skeletal muscle cells after slaughtering and their impact on meat quality: a mini-review. J Muscle Foods 21(1):51–78. doi:10.1111/j.1745-4573.2009.00167.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Rural Development Administration, Republic of Korea (No. PJ010170) and the Next Generation Biogreen 21(No. PJ011101). This research was partly supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Project no. 2014R1A1A2007175). Dr Touseef Amna acknowledges the research Grant from NRF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Touseef Amna or Inho Hwang.

Additional information

Ke Shang, Junfeng Zhang and Touseef Amna have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, K., Zhang, J., Amna, T. et al. Attenuation of cellular toxicity by calpain inhibitor induced by bacterial endotoxin: a mechanistic study using muscle precursor cells as a model system. Mol Biol Rep 42, 1281–1288 (2015). https://doi.org/10.1007/s11033-015-3869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3869-7

Keywords

Navigation