Skip to main content
Log in

Association of a disintegrin and metalloprotease 33 (ADAM33) gene polymorphisms with the risk of COPD: an updated meta-analysis of 2,644 cases and 4,804 controls

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A series of observational studies have been made to investigate the association of the ADAM33 gene polymorphisms with the risk of COPD, but their results were conflicting. Therefore, we performed an updated meta-analysis to quantitatively summarize the associations of ADAM33 gene polymorphisms with the risk of COPD. Thirteen case–control studies referring to nine SNPs were identified: V4 (rs2787094), T+1 (rs2280089), T2 (rs2280090), T1 (rs2280091), S2 (rs528557), S1 (rs3918396), Q−1 (rs612709), F+1 (rs511898) and ST+5 (rs597980). A dominant model (AA+Aa vs. aa), recessive model (AA vs. Aa+aa), additive model (AA vs. aa) and allelic model (A vs. a) were used to evaluate the association of ADAM33 polymorphism with the risk of COPD. The results indicated that significant associations were found for ADAM33 T1, T2, S1, Q−1, F+1 and ST+5 polymorphisms associated with the risk of COPD in different populations. However, no significant associations were found for V4, T+1 and S2 polymorphisms with the risk of COPD in all genetic models, even in the subgroup analysis by ethnicity. This meta-analysis provided evidence that the ADAM33 T1, T2, S1, Q−1, F+1 and ST+5 six locus polymorphisms association with the risk of COPD. Furthermore, T2, Q−1 and ST+5 indicated an association with the risk of COPD in the European populations, whereas T1, T2, S1, F+1 and Q−1 indicated an association with the risk of COPD in the Asian populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 349:1498–1504

    Article  CAS  PubMed  Google Scholar 

  2. Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM et al (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350:2645–2653

    Article  CAS  PubMed  Google Scholar 

  3. Anthonisen NR, Connett JE, Kiley JP, Altose MD, Bailey WC et al (1994) Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The lung health study. JAMA 272:1497–1505

    Article  CAS  PubMed  Google Scholar 

  4. Lokke A, Lange P, Scharling H, Fabricius P, Vestbo J (2006) Developing COPD: a 25 year follow up study of the general population. Thorax 61:935–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Primakoff P, Myles DG (2000) The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet 16:83–87

    Article  CAS  PubMed  Google Scholar 

  6. Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K et al (2002) Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418:426–430

    Article  PubMed  Google Scholar 

  7. Howard TD, Postma DS, Jongepier H, Moore WC, Koppelman GH et al (2003) Association of a disintegrin and metalloprotease 33 (ADAM33) gene with asthma in ethnically diverse populations. J Allergy Clin Immunol 112:717–722

    Article  CAS  PubMed  Google Scholar 

  8. Werner M, Herbon N, Gohlke H, Altmuller J, Knapp M et al (2004) Asthma is associated with single-nucleotide polymorphisms in ADAM33. Clin Exp Allergy 34:26–31

    Article  CAS  PubMed  Google Scholar 

  9. Blakey J, Halapi E, Bjornsdottir US, Wheatley A, Kristinsson S et al (2005) Contribution of ADAM33 polymorphisms to the population risk of asthma. Thorax 60:274–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Bleecker ER (2004) Similarities and differences in asthma and COPD. The Dutch hypothesis. Chest 126:93S–95S Discussion 159S-161S

    Article  PubMed  Google Scholar 

  11. Eisner MD, Anthonisen N, Coultas D, Kuenzli N, Perez-Padilla R et al (2010) An official American Thoracic Society public policy statement: novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 182:693–718

    Article  PubMed  Google Scholar 

  12. Aierken H, Wushouer Q, Shayhidin E, Jing W, Wufuer D (2014) Polymorphisms of the ADAM33 gene and chronic obstructive pulmonary disease risk: a meta-analysis. Clin Respir J 8(1):108–115

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Wang X, Tian X, Zhang H, Wang Z et al (2012) Association of ADAM33 gene polymorphisms with COPD in a smoker population and pulmonary function. Clin Pulm Med 17:389–391

    Google Scholar 

  14. Wang X, Li L, Xiao J, Jin C, Huang K et al (2009) Association of ADAM33 gene polymorphisms with COPD in a northeastern Chinese population. BMC Med Genet 10:132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. van Diemen CC, Postma DS, Vonk JM, Bruinenberg M, Schouten JP et al (2005) A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am J Respir Crit Care Med 172:329–333

    Article  PubMed  Google Scholar 

  16. Gosman MM, Boezen HM, van Diemen CC, Snoeck-Stroband JB, Lapperre TS et al (2007) A disintegrin and metalloprotease 33 and chronic obstructive pulmonary disease pathophysiology. Thorax 62:242–247

    Article  PubMed Central  PubMed  Google Scholar 

  17. Sadeghnejad A, Ohar JA, Zheng SL, Sterling DA, Hawkins GA et al (2009) Adam33 polymorphisms are associated with COPD and lung function in long-term tobacco smokers. Respir Res 10:21

    Article  PubMed Central  PubMed  Google Scholar 

  18. Pabst S, Pizarro Touron C, Gillissen A, Lennarz M, Tuleta I et al (2009) ADAM33 gene polymorphisms in chronic obstructive pulmonary disease. Eur J Med Res 14(Suppl 4):182–186

    PubMed Central  PubMed  Google Scholar 

  19. Xiao J, Han J, Wang X, Hua D, Su D et al (2011) Association of ADAM33 gene with susceptibility to COPD in Tibetan population of China. Mol Biol Rep 38:4941–4945

    Article  CAS  PubMed  Google Scholar 

  20. Korytina GF, Tselousova OS, Akhmadishina LZ, Victorova EV, Zagidullin ShZ et al (2012) Association of the MMP3, MMP9, ADAM33 and TIMP3 genes polymorphic markers with development and progression of chronic obstructive pulmonary disease. Mol Biol (Mosk) 46:487–499

    Article  CAS  Google Scholar 

  21. Chi L, Wang P, Wang H, Shang X, Qiao K et al (2013) Association of polymorphism of ADAM33 gene and chronic obstructive pulmonary disease. China Med Herald 10:15–17

    CAS  Google Scholar 

  22. Qin R, Wang H, Guo C, Ma Y, Yin H et al (2012) Association between single nucleotide polymorphisms and haplotypes in ADAM33 gene and chronic obstructive pulmonary disease. Int J Respir 32:182–187

    Google Scholar 

  23. Yin Y, Wang A, Chen P, Liu Q, Yu Q (2010) Association between ADAM33 gene polymorphism and chronic obstructive pulmonary disease. Chin J Nosocomiol 20:1840–1843

    CAS  Google Scholar 

  24. Zhou J, Sun Y (2012) The relationship between ADAM33 S2 sit gene duration and disease course and age of the patients with COPD. Chin J Clin Ration Drug Use 5:1–2

    Google Scholar 

  25. Chi X, Xiao W, Wang J, Jiang H, Wang L et al (2011) Association between ADAM33 gene polymorphism and COPD. Shandong Med J 51:1–3

    CAS  Google Scholar 

  26. Tan J, Liu AP, Sun C, Bai YF, Lv F (2014) Association of ADAM33 gene polymorphisms with COPD in the Mongolian population of China. Ann Hum Biol 41:9–14

    Article  PubMed  Google Scholar 

  27. Castaldi PJ, Cho MH, Cohn M, Langerman F, Moran S et al (2010) The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Hum Mol Genet 19:526–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Koppelman GH, Sayers I (2011) Evidence of a genetic contribution to lung function decline in asthma. J Allergy Clin Immunol 128:479–484

    Article  CAS  PubMed  Google Scholar 

  29. Yoshinaka T, Nishii K, Yamada K, Sawada H, Nishiwaki E et al (2002) Identification and characterization of novel mouse and human ADAM33s with potential metalloprotease activity. Gene 282:227–236

    Article  CAS  PubMed  Google Scholar 

  30. Kheradmand F, Rishi K, Werb Z (2002) Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci 115:839–848

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Ohtsu H, Dempsey PJ, Eguchi S (2006) ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am J Physiol Cell Physiol 291:C1–C10

    Article  CAS  PubMed  Google Scholar 

  32. Sharma N, Tripathi P, Awasthi S (2011) Role of ADAM33 gene and associated single nucleotide polymorphisms in asthma. Allergy Rhinol (Providence) 2:e63–e70

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from College of Young Talents Foundation of Anhui Province (2010SQRL071ZD), the Natural Science Foundation of Anhui province (1208085QH170), the Specialized Research Fund for the Doctoral Program of Higher Education (20133420110001) and the National Natural Science Foundation of China (81371730, 81441090).

Conflicts of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Fan Zhou or Qi-Xing Zhu.

Additional information

Deng-Chuan Zhou and Cheng-Fan Zhou have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 78 kb)

Supplementary material 2 (DOC 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, DC., Zhou, CF., Toloo, S. et al. Association of a disintegrin and metalloprotease 33 (ADAM33) gene polymorphisms with the risk of COPD: an updated meta-analysis of 2,644 cases and 4,804 controls. Mol Biol Rep 42, 409–422 (2015). https://doi.org/10.1007/s11033-014-3782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3782-5

Keywords

Navigation