Skip to main content
Log in

Genetic effects of single nucleotide polymorphisms in JAK2 and STAT5A genes on susceptibility of Chinese Holsteins to mastitis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The JAK–STAT pathway plays a key role in host immunity. The present study was designed to evaluate the effects of single nucleotide polymorphisms (SNPs) in STAT5A and JAK2 genes on some serum cytokines, mastitis and milk production traits. Two SNPs (SNP1 43046497A/C and SNP2 43047829G/A) in STAT5A, and four SNPs in JAK2 (SNP3 39652267A/G, SNP4 39630048C/T, SNP5 39631044G/A, and SNP6 39631175T/C) were revealed and genotyped in 268 Chinese Holstein cattle. Fixed model was used to analyze the association of SNPs with phenotypes by general linear model procedure of SAS 9.1. SNP1 and SNP4 were significantly associated with IL-6 and IL-17 (P < 0.05), respectively. In JAK2 gene, SNP3 was highly significant (P < 0.01) and SNP5 was significant (P < 0.05) in association with SCC, whereas, the association of SNP6 was found significant (P < 0.05) with both SCC and SCS. Combination genotype analysis revealed that SNPs in JAK2 gene significantly associated with SCC and SCS were associated significantly with the corresponding phenotypes in combinations as well. The GG genotype of SNP3 individually and in any combination genotypes showed lowest SCC. The dominant effect of SNP1, SNP5 and SNP6 was found highly significant (P < 0.01) on the corresponding phenotypes (IL-6, SCC and SCS). As for haplotype analysis, two haplotypes were revealed between the two SNPs of STAT5A gene and four haplotypes amongst four SNPs in JAK2 gene; strong linkage disequilibrium (D′ > 0.9) was observed between all these haplotypes. The results imply that the identified SNPs could be powerful markers to select dairy cattle with improved genetic resistance against mastitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sordillo LM, Streicher KL (2002) Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia 7:135–146

    Article  PubMed  Google Scholar 

  2. Leitner G, Chaffer M, Krifucks O, Glickman A, Ezra E, Saran A (2000) Milk leukocyte populations in heifers free from udder infection. J Vet Med 47:133–138

    Article  CAS  Google Scholar 

  3. Hinrichs D, Stamer E, Junge W, Kalim E (2005) Genetic analyses of mastitis data using animal threshold models and genetic correlation with production traits. J Dairy Sci 88:2260

    Article  CAS  PubMed  Google Scholar 

  4. Sorensen LP, Mark T, Madsen P, Lund MS (2009) Genetic correlations between pathogen-specific mastitis and somatic cell count in Danish Holsteins. J Dairy Sci 92(7):3457–3471

    Article  CAS  PubMed  Google Scholar 

  5. Koivula M, Mantysaari EA, Negussie E, Serenius T (2005) Genetic and phenotypic relationships among milk yield and somatic cell count before and after clinical mastitis. J Dairy Sci 88(2):827–833

    Article  CAS  PubMed  Google Scholar 

  6. Pant SD, Flavio SS, Ivan LB, Bhawani SS, Niel AK (2007) Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genom 8:421. doi:10.1186/1471-2164-8-421

    Article  Google Scholar 

  7. Shuai K, Liu B (2003) Regulation of JAK–STAT signaling in the immune system. Nat Rev Immunol 3:900–911

    Article  CAS  PubMed  Google Scholar 

  8. Hennighausen L, Robinson GW (2008) Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev 22:711–721

    Article  PubMed Central  PubMed  Google Scholar 

  9. Igaz P, Toth S, Falus A (2001) Biological and clinical significance of the JAK–STAT pathway; lessons from knockout mice. Inflamm Res 50:435–441

    Article  CAS  PubMed  Google Scholar 

  10. Watson CJ (2001) STAT transcription factors in mammary gland development and tumorigenesis. J Mamm Gland Biol Neoplasia 6:115–127

    Article  CAS  Google Scholar 

  11. Rawlings JS, Kristin MR, Douglas AH (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    Article  CAS  PubMed  Google Scholar 

  12. Yang Y, Li Q, Ju Z, Huang J et al (2012) Three novel single-nucleotide polymorphisms of complement component 4 gene (C4A) in Chinese Holstein cattle and their associations with milk performance traits and CH50. Vet Immunol Immunopathol 145:223–232

    Article  CAS  PubMed  Google Scholar 

  13. Rupp R, Boichard D (1999) Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J Dairy Sci 82:2198–2204

    Article  CAS  PubMed  Google Scholar 

  14. He Y, Chu Q, Ma P, Yachun W, Qin Z, Sun D, Yi Z, Ying Y, Yuan Z (2011) Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. J Dairy Res 78:242–249

    Article  CAS  PubMed  Google Scholar 

  15. Khatib H, Monson RL, Schutzkus V, Kohl DM, Rosa GJM, Rutledge JJ (2008) Mutations in the STAT5A gene are associated with embryonic survival and milk composition in cattle. J Dairy Sci 91:784–793

    Article  CAS  PubMed  Google Scholar 

  16. Selvaggi M, Dario C, Normanno G, Celano GV, Dario M (2009) Genetic polymorphism of STAT5A protein: relationships with production traits and milk composition in Italian Brown cattle. J Dairy Res 76(4):441–445

    Article  CAS  PubMed  Google Scholar 

  17. Matsumoto A, Seki Y, Kubo M, Ohtsuka S, Suzuki A, Hayashi I, Tsuji K, Nakahata T, Okabe M, Yamada S, Yoshimura A (1999) Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol Cell Biol 19(9):6396–6407

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L (1997) Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11:179–186

    Article  CAS  PubMed  Google Scholar 

  19. Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, Rosen JM, Robinson GW, Hennighausen L (2001) Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol 155:531–542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Akada H, Yan D, Zou H, Fiering S, Hutchison RE, Mohi MG (2010) Conditional expression of heterozygous or homozygous JAK2V617F from its endogenous promoter induces a polycythemia vera-like disease. Blood 115(17):3589–3597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sivko GS, Sanford DC, Dearth LD, Tang D, DeWille JW (2004) CCAAT/Enhancer binding protein delta (c/EBPdelta) regulation and expression in human mammary epithelial cells: II. Analysis of activating signal transduction pathways, transcriptional, post-transcriptional, and post-translational control. J Cell Biochem 93(4):844–856

    Article  CAS  PubMed  Google Scholar 

  22. Migita K, Koga T, Komori A, Torigoshi T et al (2011) Influence of Janus kinase inhibition on interleukin 6-mediated induction of acute-phase serum amyloid A in rheumatoid synovium. J Rheumatol 38(11):2309–2317

    Article  CAS  PubMed  Google Scholar 

  23. Bonifati C, Ameglio F (1999) Cytokines in psoriasis. Int J Dermatol 38(4):241–251

    Article  CAS  PubMed  Google Scholar 

  24. Lenarczyk A, Helsloot J, Farmer K, Peters L, Sturgess A, Kirkham B (2000) Antigen-induced IL-17 response in the peripheral blood mononuclear cells (PBMC) of healthy controls. Clin Exp Immunol 122(1):41–48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Arican O, Aral M, Sasmaz S, Ciragil P (2005) Serum levels of TNF-α, IFN-γ, IL-6, IL-8, IL-12, IL-17 & IL-18 in patients with active psoriasis and correlation with disease severity. Mediat Inflamm 5:273–279

    Article  Google Scholar 

  26. Sakemi Y, Tamura Y, Hagiwara K (2011) Interleukin-6 inquarter milk as a further prediction marker for bovine subclinical mastitis. J Dairy Res 78:118–121

    Article  CAS  PubMed  Google Scholar 

  27. Stacey LA, Christine MC, Lorraine MS (2011) Immunopathology of mastitis: Insights into disease recognition and resolution. J Mamm Gland Biol Neoplasia 16:291–304

    Article  Google Scholar 

  28. Polgar N, Csongei V, Szabo M, Zambo V, Melegh BI, Sumegi K, Nagy G, Tulassay Z, Melegh B (2012) Investigation of JAK2, STAT3 and CCR6 polymorphisms and their gene–gene interactions in inflammatory bowel disease. Int J Immunogenet 39(3):247–252

    Article  CAS  PubMed  Google Scholar 

  29. Zhong Y, Wu J, Ma R, Cao H, Wang Z, Ding J, Cheng L, Feng J, Chen B (2012) Association of Janus kinase 2 (JAK2) polymorphisms with acute leukemia susceptibility. Int J Lab Hematol 34(3):248–253

    Article  CAS  PubMed  Google Scholar 

  30. Constantinescu SN, Girardot M, Pecquet C (2008) Mining for JAK–STAT mutations in cancer. Trends Biochem Sci 33(3):122–131

    Article  CAS  PubMed  Google Scholar 

  31. Hermouet S, Vilaine M (2011) The JAK2 46/1 haplotype: a marker of inappropriate myelomonocytic responseto cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasm, and impaired defense against infection? Haematologica 96:1575–1578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Prager M, Büttner J, Haas V, Baumgart DC, Sturm A, Zeitz M, Büning C (2012) The JAK2 variant rs10758669 in Crohn’s disease: altering the intestinal barrier as one mechanism of action. Int J Colorectal Dis 5:565–573. doi:10.1007/s00384-011-1345-y

    Article  Google Scholar 

  33. Yeh YT, Chien WC, Ren JW, Shen NW (2013) Progesterone and related compounds in hepatocellular carcinoma: basic and clinical aspects. Bio Med Res Int. doi:10.1155/2013/290575

    Google Scholar 

  34. Bulger M, Groudin M (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144:327–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lomvardas S, Barnea G, Pisapia DJ, Mendelsohn M et al (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126:403–413

    Article  CAS  PubMed  Google Scholar 

  36. Ong CT, Corces VG (2011) Enhancer function: new insights into the regulation of tissue-specific gene expression. Nature Rev Genet 12:283–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Alshemmari SH, Rajaan R, Ameen R, Al-Drees MA, Almosailleakh MR (2013) JAK2V617F allele burden in patients with myeloproliferative neoplasms. Ann Hematol. doi:10.1007/s00277-013-1988-6

    PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Earmarked Fund for Modern Agro-industry Technology Research System (CARS-37), the National Natural Science Foundation of China (31272420), the Fund for Basic Research from the Ministry of Education of the People’s Republic of China (2011JS006), Changjiang Scholar and Innovation Research Team in University (IRT1191) and the National Key Technologies R & D Program (2011BAD28B02) for financial support, and to the manager and staff of the dairy farms for providing the milk and blood samples. We are thankful to Miranda Miskowiec from USA, (an English instructor in our college) for proof reading our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yachun Wang.

Additional information

Tahir Usman and Ying Yu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, T., Yu, Y., Liu, C. et al. Genetic effects of single nucleotide polymorphisms in JAK2 and STAT5A genes on susceptibility of Chinese Holsteins to mastitis. Mol Biol Rep 41, 8293–8301 (2014). https://doi.org/10.1007/s11033-014-3730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3730-4

Keywords

Navigation