Skip to main content
Log in

The involvement of hexokinase in the coordinated regulation of glucose and gibberellin on cell wall invertase and sucrose synthesis in grape berry

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In plants, hexokinase (HXK, EC 2.7.1.1), an enzyme normally involved in hexose phosphorylation, plays an important role in sugar sensing and signaling. The hexokinase activity of grape HXKs was confirmed by functional complementation of the hexokinase-deficient yeast strain YSH7.4-3C (hxk1, hxk2, glk1). HXK1 and HXK2 were able to complement this mutant. The subcellular localization of HXK1 and HXK2, observed with green fluorescent protein fusion constructs, indicated that HXK1 localized to the cytosol while HXK2 was a nuclear-targeted hexokinase. Gibberellin (GA3) control various processes across plant life and has been involved in sugar accumulation. The coordinated regulation of exogenous GA3 with Glc on CWINV, SuSy1, or SuSy2 expressions indicated that GA3 can relieve the repression of Glc on CWINV or SuSy1 expression, and the repression of GA3 on SuSy2 expression overrides the Glc-inductive effect, resulting in the down-regulation of SuSy2 expression. It was concluded that GA3 negatively interfere with Glc signal transduction depending on hexokinase phosphorylation. GA3 might regulate CWINV, SuSy1 or SuSy2 expression to in order to maintain an intracellular sugar levels and normal cell metabolism. Our results provide new insights into the crosstalk mechanism of GA3 and Glc signaling depending on hexokinase in grape berry sugar accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

GA3:

Gibberellin (gibberellic acid)

CWINV:

Cell wall invertase

HXK:

Hexokinase

Glc:

Glucose

Fru:

Fructose

Suc:

Sucrose

SuSy:

Sucrose synthase

References

  1. Cho YH, Sheen J, Yoo SD (2010) Low glucose uncouples hexokinase1-dependent sugar signaling from stress and defense hormone abscisic acid and C2H4 responses in Arabidopsis. Plant Physiol 152:1180–1182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Rosecler M, Rossetto M, Purgatto E, Nascimento Jd, Lajolo FM (2003) Effects of gibberellic acid on sucrose accumulation and sucrose biosynthesizing enzymes activity during banana ripening. Plant Growth Regul 41:207–214

    Article  Google Scholar 

  3. Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  PubMed  Google Scholar 

  4. Razem FA, Baron K, Hill RD (2006) Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9:454–459

    Article  CAS  PubMed  Google Scholar 

  5. Dagar A, Weksler A, Friedman H, Lurie S (2012) Gibberellic acid (GA3) application at the end of pit ripening: effect on ripening and storage of two harvests of ‘September Snow’ peach. Sci Hortic 140:125–130

    Article  CAS  Google Scholar 

  6. Zhang C, Tanabe K, Tamura F, Itai A, Yoshida M (2007) Roles of gibberellins in increasing sink demand in Japanese pear fruit during rapid fruit growth. Plant Growth Regul 52(2):161–172

    Article  CAS  Google Scholar 

  7. Niu ZM, Xu XF, Wang Y, Li TZ, Kong J, Han ZH (2008) Effects of leaf-applied potassium gibberellin and source-sink ratio on potassium absorption and distribution in grape fruits. Sci Hortic 115:164–167

    Article  CAS  Google Scholar 

  8. Teszlak P, Kocsis M, Gaal K, Nikfardjam MP (2013) Regulatory effects of exogenous gibberellic acid (GA3) on water relations and CO2 assimilation among grapevine (Vitis vinifera L.) cultivars. Sci Hortic 159:41–51

    Article  CAS  Google Scholar 

  9. Reynolds AG, Roller J, Forgione A, de Savigny C (2006) Gibberellic acid and basal leaf removal: implications for fruit maturity, vestigial seed development and sensory attributes of Sovereign Coronation grapes. Am J Enol Vitic 57:41–53

    CAS  Google Scholar 

  10. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  CAS  PubMed  Google Scholar 

  11. González MC, Cejudo FJ (2007) Gibberellin-regulated expression of neutral and vacuolar invertase genes in petioles of sugar beet plants. Plant Sci 172:839–846

    Article  Google Scholar 

  12. Wang XQ, Huang WD, Zhan JC (2009) Effects of low light on phloem ultrastructure and subcellular localization of sucrose synthase in Prunus persica L. var. nectarine Ait. Fruit. Russ J Plant Physiol 56(4):462–469

    Article  CAS  Google Scholar 

  13. Kataoka K, Yashiro Y, Habu T, Sunamoto K, Kitajima A (2009) The addition of gibberellic acid to auxin solutions increases sugar accumulation and sink strength in developing auxin-induced parthenocarpic tomato fruits. Sci Hortic 123:228–233

    Article  CAS  Google Scholar 

  14. Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Ann Rev Gen 45:41–59

    Article  CAS  Google Scholar 

  15. Wang XQ, Li LM, Yang PP, Gong CL (2014) The role of hexokinases from grape berries (Vitis vinifera L.) in regulating the expression of cell wall invertase and sucrose synthase genes. Plant Cell Rep 33:337–347. doi:10.1007/s00299-013-1533-z

    Article  PubMed  Google Scholar 

  16. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  17. Moreno D, Berli FJ, Piccoli PN, Bottini R (2011) Gibberellins and abscisic acid promote carbon allocation in roots and berries of grapevines. J Plant Growth Regul 30:220–228

    Article  CAS  Google Scholar 

  18. Owen SJ, Lafond MD, Bowen P, Bogdanoff C, Usher K, Abrams SR (2009) Profiles of abscisic acid and its catabolites in developing merlot grape (Vitis vinifera) berries. Am J Enol Vitic 60(3):277–285

    CAS  Google Scholar 

  19. Yu F, Li LM, Yang PP, Wang XQ (2013) Hexokinase from grape berries: its prokaryotic expression, polyclonal antibody preparation and biochemical property analyses. J Plant Biochem Biotechnol 22(3):324–334. doi:10.1007/s13562-012-0163-9

    Article  CAS  Google Scholar 

  20. Zhang C, Whiting MD (2011) Pre-harvest foliar application of Prohexadione-Ca and gibberellins modify canopy source-sink relations and improve quality and shelf-life of ‘Bing’ sweet cherry. Plant Growth Regul 65:145–156

    Article  CAS  Google Scholar 

  21. Pérez FJ, Gómez M (2000) Possible role of soluble invertase in the gibberellic acid berry-sizing effect in Sultana grape. Plant Growth Regul 30:111–116

    Article  Google Scholar 

  22. Kordel B, Kutschera U (2000) Effects of gibberellin on cellulose biosynthesis and membrane-associated sucrose synthase activity in pea internodes. J Plant Physiol 156:570–573

    Article  CAS  Google Scholar 

  23. Serrani JC et al (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56:922–934

    Article  CAS  PubMed  Google Scholar 

  24. Mitsuhashi W, Sasaki S, Kanazawa A, Yang YY, Kamiya Y, Toyomasu T (2004) Differential expression of acid invertase genes during seed germination in Arabidopsis thaliana. Biosci Biotechnol Biochem 68:602–608

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki A, Abe K, Et A (1996) Occurrence of two sucrose synthase isozymes during maturation of Japanese pear fruit. J Am Soc Hortic Sci 121(5):943–947

    CAS  Google Scholar 

  26. Sun TP, Gubler F (2004) Molecular mechanism of gibberllin signal in plants. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  27. Robinson SP, Jacobs AK, Dry IB (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol 114:771–778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ciereszko I, Kleczkowski LA (2002) Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase-dependent mechanisms. Plant Physiol Biochem 40:907–911

    Article  CAS  Google Scholar 

  29. Bolouri-Moghaddam MR, Roy KL, Xiang L, Rolland F, Ende WV (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS 277:2022–2037

    Article  CAS  Google Scholar 

  30. Galina A, Da-Silva W (2000) Hexokinase acitivity alters sugar–nucleotide formation in maize root homogenates. Phytochemical 53:29–37

    Article  CAS  Google Scholar 

  31. Cho JI, Ryoo N, Ko S, Lee SK, Lee J, Jung KH, Lee YH, Bhoo SH, Winderickx J, An G, Hahn TR, Jeon JS (2006) Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224:598–611. doi:10.1007/s00425-006-0251-y

    Article  CAS  PubMed  Google Scholar 

  32. Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    Article  CAS  PubMed  Google Scholar 

  33. Leon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  CAS  PubMed  Google Scholar 

  34. Perata P, Matsukura C, Vernieri P, Yamaguchia J (1997) Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9:2197–2208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are most grateful to Prof. Jeon Jong-Seong (Korea Kyung Hee University) for her providing us the yeast hexokinase-deficient triple mutant YSH7.4-3C (hxk1, hxk2, glk1). This research was supported by the National Natural Science Foundation of China (Grants No. 30871698, No. 31372036, and No. 31071764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuqin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhen, L., Tan, X. et al. The involvement of hexokinase in the coordinated regulation of glucose and gibberellin on cell wall invertase and sucrose synthesis in grape berry. Mol Biol Rep 41, 7899–7910 (2014). https://doi.org/10.1007/s11033-014-3683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3683-7

Keywords

Navigation