Skip to main content
Log in

Breed-specific transcriptome response of spleen from six to eight week old piglet after infection with Streptococcus suis type 2

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Different pig breeds have shown differential susceptibility to the pathogen infection; however, molecular mechanisms of the infection susceptibility are not fully understood. Streptococcus suis type 2 (SS2) is an important zoonotic pathogen. To identify the genes responsible for infection susceptibility, pigs from two different breeds (Enshi black and Landrace) were inoculated with SS2 and their spleen transcriptome profiles were investigated in the present study. The differentially expressed genes (DEGs) were analyzed from infected versus control pigs in each breed, and then compared between both pig breeds. Enshi black pig showed more DEGs than Landrace (830 vs. 611) and most of these were due to down-regulated genes (543 vs. 387). However some DEGs were uniquely expressed in one breed, some were expressed in opposite direction in both breeds. A number of candidate genes and pathways are identified which might be involved in susceptibility to SS2, for example, MMP9 and Resistin were only significantly expressed in Landrace. NPG3 and PMAP23 were up-regulated in Landrace whereas down-regulated in Enshi black. LENG8 in control Landrace have inherently higher expression than control Enshi black. IGKV6 is down-regulated in Landrace but up-regulated in Enshi black. Overall, the transcriptome profiles are consistent with the clinical signs, i.e. the Enshi black is more susceptible to SS2 infection than Landrace. This is the first study to identify differential gene expression between indigenous and modern commercial pigs after in vivo SS2 infection using RNA-seq. The significant DEGs in splenic profiles between two pig breeds suggested considerable involvement of genetic background in susceptibility to the SS2 infection in pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20:50–57

    Article  CAS  PubMed  Google Scholar 

  2. Gottschalk M, Xu J, Calzas C, Segura M (2010) Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol 5:371–391

    Article  PubMed  Google Scholar 

  3. Fittipaldi N, Segura M, Grenier D, Gottschalk M (2012) Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 7:259–279

    Article  CAS  PubMed  Google Scholar 

  4. Lian L, Qu LJ, Sun HY, Chen YM, Lamont SJ, Liu CJ, Yang N (2012) Gene expression analysis of host spleen responses to Marek’s disease virus infection at late tumor transformation phase. Poult Sci 91:2130–2138

    Article  CAS  PubMed  Google Scholar 

  5. Shin GW, White SL, Dahms HU, Jeong HD, Kim JH (2013) Disease resistance and immune-relevant gene expression in golden mandarin fish, Siniperca scherzeri Steindachner, infected with infectious spleen and kidney necrosis virus-like agent. J Fish Dis. doi:10.1111/jfd.12182

    Google Scholar 

  6. Li R, Zhang AD, Chen B, Liu T, Wang Y, Chen H, Jin M (2010) Response of swine spleen to Streptococcus suis infection revealed by transcription analysis. BMC Genom 11:556

    Article  Google Scholar 

  7. Rong J, Zhang W, Wang X, Fan H, Lu C, Yao H (2012) Identification of candidate susceptibility and resistance genes of mice infected with Streptococcus suis type 2. PLoS One 7:e32150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yu Y, Luo J, Mitra A, Chang S, Tian F, Zhang H, Yuan P, Zhou H, Song J (2011) Temporal transcriptome changes induced by MDV in Marek’s disease-resistant and -susceptible inbred chickens. BMC Genom 12:501

    Article  CAS  Google Scholar 

  9. Smith J, Sadeyen JR, Paton IR, Hocking PM, Salmon N, Fife M, Nair V, Burt DW, Kaiser P (2011) Systems analysis of immune responses in Marek’s disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism. J Virol 85:11146–11158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Subramaniam S, Preeyanon L, Cheng HH (2013) Transcriptional profiling of Meq-dependent genes in Marek’s disease resistant and susceptible inbred chicken lines. PLoS One 8:e78171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Perumbakkam S, Muir WM, Black-Pyrkosz A, Okimoto R, Cheng HH (2013) Comparison and contrast of genes and biological pathways responding to Marek’s disease virus infection using allele-specific expression and differential expression in broiler and layer chickens. BMC Genom 14:64

    Article  CAS  Google Scholar 

  12. Barreiro LB, Marioni JC, Blekhman R, Stephens M, Gilad Y (2010) Functional comparison of innate immune signalling pathways in primates. PLoS Genet 6:e1001249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lunney JK, Chen H (2010) Genetic control of host resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Virus Res 154:161–169

    Article  CAS  PubMed  Google Scholar 

  14. Lunney JK, Steibel JP, Reecy JM, Fritz E, Rothschild MF, Kerrigan M, Trible B, Rowland RRR (2011) Probing genetic control of swine responses to PRRSV infection: current progress of the PRRS host genetics consortium. BMC Proc 5:S30

    Article  PubMed Central  PubMed  Google Scholar 

  15. Reiner G, Willems H, Pesch S, Ohlinger VF (2010) Variation in resistance to the porcine reproductive and respiratory syndrome virus (PRRSV) in Pietrain and Miniature pigs. J Anim Breed Genet 127:100–106

    Article  CAS  PubMed  Google Scholar 

  16. Sousa KRS, Ribeiro AMF, Goes PRN, Guimarães SEF, Lopes PS, Veroneze R, Gasparino E (2011) Toll-Like Receptor 6 differential expression in two pig genetic groups vaccinated against Mycoplasma hyopneumoniae. BMC Proc 5:S9

    Article  CAS  Google Scholar 

  17. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Trapnell C, Williams BA, Pertea G (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Mortazavi A, Williams BA, McCue K (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  20. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 10:986–995

    Google Scholar 

  21. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  22. Zhang Z (1986) Pig breeds in China. Shanghai Scientific and Technical Publishers, Shanghai

    Google Scholar 

  23. Li M, Tian S, Jin L et al (2013) Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet 45:1431–1438

    Article  CAS  PubMed  Google Scholar 

  24. Bierne H, Hamon M, Cossart P (2012) Epigenetics and Bacterial Infections. Cold Spring Harb Perspect Med 2:a010272

    Article  PubMed Central  PubMed  Google Scholar 

  25. Gómez-Díaz E, Jordà M, Peinado MA, Rivero A (2012) Epigenetics of host–pathogen interactions: the road ahead and the road behind. PLoS Pathog 8:e1003007

    Article  PubMed Central  PubMed  Google Scholar 

  26. Medzhitov R, Horng T (2009) Transcriptional control of the inflammatory response. Nat Rev Immunol 9:692–703

    Article  CAS  PubMed  Google Scholar 

  27. Bayarsaihan D (2011) Epigenetic mechanisms in inflammation. J Dent Res 90:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Caldelari I, Chao Y, Romby P, Vogel J (2013) RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb Perspect Med 3(9):a010298

    Article  PubMed  Google Scholar 

  29. Le Rhun A, Charpentier E (2012) Small RNAs in streptococci. RNA Biol 9:414–426

    Article  PubMed  Google Scholar 

  30. Chen H, Li C, Fang M, Zhu M, Li X, Zhou R, Li K, Zhao S (2009) Understanding Haemophilus parasuis infection in porcine spleen through a transcriptomics approach. BMC Genom 10:64

    Article  Google Scholar 

  31. Huang Y, Huang X, Yan Y, Cai J, Ouyang Z, Cui H, Wang P, Qin Q (2011) Transcriptome analysis of orange-spotted grouper (Epinephelus coioides) spleen in response to Singapore grouper iridovirus. BMC Genom 12:556

    Article  CAS  Google Scholar 

  32. Jobin MC, Gottschalk M, Grenier D (2006) Upregulation of prostaglandin E2 and matrix metalloproteinase 9 production by human macrophage-like cells: synergistic effect of capsular material and cell wall from Streptococcus suis. Microb Pathog 40:29–34

    Article  CAS  PubMed  Google Scholar 

  33. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629

    Article  CAS  PubMed  Google Scholar 

  34. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sbardella D, Fasciglione GF, Gioia M, Ciaccio C, Tundo GR, Marini S, Coletta M (2012) Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 33:119–208

    Article  CAS  PubMed  Google Scholar 

  36. Greenlee KJ, Corry DB, Engler DA, Matsunami RK, Tessier P, Cook RG, Werb Z, Kheradmand F (2006) Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation. J Immunol 177:7312–7321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Chen H, Lunney JK, Cheng L, Li X, Cao J, Zhu M, Zhao S (2011) Porcine S100A8 and S100A9: molecular characterizations and crucial functions in response to Haemophilus parasuis infection. Dev Comp Immunol 35:490–500

    Article  CAS  PubMed  Google Scholar 

  38. Goyette J, Geczy CL (2010) Inflammation-associated S100 proteins: new mechanisms that regulate function. Amino Acids 41:821–842

    Article  PubMed  Google Scholar 

  39. Kadarmideen HN, Ali AA, Thomson PC, Muller B, Zinsstag J (2011) Polymorphisms of the SLC11A1 gene and resistance to bovine tuberculosis in African Zebu cattle. Anim Genet 42:656–658

    Article  CAS  PubMed  Google Scholar 

  40. Liu M, Fang L, Tan C, Long T, Chen H, Xiao S (2011) Understanding Streptococcus suis serotype 2 infection in pigs through a transcriptional approach. BMC Genom 12:253

    Article  CAS  Google Scholar 

  41. Fabriek BO, Van Bruggen R, Deng DM, Ligtenberg AJ, Nazmi K, Schornagel K, Vloet RP, Dijkstra CD, van den Berg TK (2009) The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood 113:887–892

    Article  CAS  PubMed  Google Scholar 

  42. Polfliet MM, Fabriek BO, Daniëls WP, Dijkstra CD, Van den Berg TK (2006) The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production. Immunobiology 211:419–425

    Article  CAS  PubMed  Google Scholar 

  43. Dawson HD, Loveland JE, Pascal G et al (2013) Structural and functional annotation of the porcine immunome. BMC Genom 14:332

    Article  CAS  Google Scholar 

  44. Milan G, Granzotto M, Scarda A, Calcagno A, Pagano C, Federspil G, Vettor R (2002) Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obes Res 10:1095–1103

    Article  CAS  PubMed  Google Scholar 

  45. Silswal N, Singh AK, Aruna B, Mukhopadhyay S, Ghosh S, Ehtesham NZ (2005) Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun 334:1092–1101

    Article  CAS  PubMed  Google Scholar 

  46. Tang J, Wang C, Feng Y, Yang W et al (2006) Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med 3:e151

    Article  PubMed Central  PubMed  Google Scholar 

  47. Schwartz JC, Lefranc MP, Murtaugh MP (2012) Evolution of the porcine (Sus scrofa domestica) immunoglobulin kappa locus through germline gene conversion. Immunogenetics 64:303–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Butler JE, Wertz N, Sun XZ (2013) Antibody repertoire development in fetal and neonatal piglets. XIV. Highly restricted IGKV gene usage parallels the pattern seen with IGLV and IGHV. Mol Immunol 55:329–336

    Article  CAS  PubMed  Google Scholar 

  49. Schwartz JC, Lefranc MP, Murtaugh MP (2012) Organization, complexity and allelic diversity of the porcine (Sus scrofa domestica) immunoglobulin lambda locus. Immunogenetics 64:399–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wertz N, Vazquez J, Wells K, Sun J, Butler JE (2013) Antibody repertoire development in fetal and neonatal piglets. XII. Three IGLV genes comprise 70 % of the pre-immune repertoire and there is little junctional diversity. Mol Immunol 55:319–328

    Article  CAS  PubMed  Google Scholar 

  51. Sarson AJ, Parvizi P, Lepp D, Quinton M, Sharif S (2008) Transcriptional analysis of host responses to Marek’s disease virus infection in genetically resistant and susceptible chickens. Anim Genet 39:232–240

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks a lot to Dr. Nares Trakooljul (Leibniz Institute for Farm Animals Biology) in Germany for providing technical assistance to use the IPA software. This work was supported by National Key Project for Breeding of New Transgenic Varieties (2009ZX08009-141B) and Innovation system of agricultural science and technology in Hubei Province (2011-620-001-003) and open project from Hubei Key Lab for Animal Embryo Engineering and Molecular Breeding (2011ZD102).

Conflict of interest

The authors declare that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GS. Liu.

Additional information

U. Gaur, YY. Xiong and QP. Luo have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Clinical signs in Landrace and Enshi black piglets (DOCX 15 kb)

11033_2014_3680_MOESM2_ESM.doc

List of all DEGs: The list of all significant DEGs. There are 3 sheets: “Landrace” is DEGs in LI versus LC; “Enshi black” is DEGs in EI versus EC; “LC vs. EC” is DEGs in non-infected Landrace versus non-infected Enshi black. For each DEG is shown its Ensembl gene ID, fold-change, p value, adjusted q value (Benjamini-Hochberg correction), gene name and function description. Genes without names or descriptions are empty. (DOC 96 kb)

Selected DEGs according to functional classifications. (XLS 48 kb)

11033_2014_3680_MOESM4_ESM.tif

Canonical_Pathways: Significant canonical pathways based on DEGs identified by Fishers test using IPA. There are 3 sheets: “Landrace”, “Enshi black”, “LC vs. EC” which has the same meanings as S2. The ratio indicates the number of DEGs involved in each canonical pathway divided by the total number of genes/molecules within each pathway according to the IPA® Knowledge Base. (TIFF 1101 kb)

11033_2014_3680_MOESM5_ESM.tif

Significant GO_categories: GO categories identified according to p values using IPA. There are 3 sheets: the “Landrace”, “Enshi black”, “LC vs. EC” which has the same meanings as S2. (TIFF 19742 kb)

The expression of immunoglobulin genes in Landrace and Enshi black piglets (TIFF 3893 kb)

11033_2014_3680_MOESM7_ESM.tif

The top 20 up- & down-regulated DEGs in Landrace: The top 20 up- and down-regulated DEGs in Landrace piglet spleen following SS2 infection, meanwhile showed the expression status in Enshi black piglets. (TIFF 13820 kb)

11033_2014_3680_MOESM8_ESM.xls

The top 20 up- & down-regulated DEGs in Enshi: The top 20 up- and down-regulated DEGs in Enshi black piglet spleen following SS2 infection, meanwhile showed the expression status in Landrace piglets. (XLS 23 kb)

11033_2014_3680_MOESM9_ESM.xls

The top 20 up- & down-regulated DEGs in Landrace versus Enshi: The top 20 up DEGs in non-infected Landrace versus non-infected Enshi black piglet spleen. (XLS 370 kb)

11033_2014_3680_MOESM10_ESM.doc

The genes expressed in opposite directions in Landrace and Enshi black, Shows the DEG results of non-infected Landrace versus non-infected Enshi black. (DOC 31 kb)

Networks: This file contains 3 sheets for “Landrace”, “Enshi black” and “LC vs. EC”, respectively. (XLS 36 kb)

Network (s). (XLS 36 kb)

Network (s). (DOC 79 kb)

Network (s). (DOC 91 kb)

11033_2014_3680_MOESM15_ESM.doc

Chart for gene ACTA1-related networks: This is merged Networks 4 and 23 in Landrace, and network 5 in Enshi black of S11. (DOC 86 kb)

Primer sequences used for qPCR. (DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaur, U., Xiong, Y., Luo, Q. et al. Breed-specific transcriptome response of spleen from six to eight week old piglet after infection with Streptococcus suis type 2. Mol Biol Rep 41, 7865–7873 (2014). https://doi.org/10.1007/s11033-014-3680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3680-x

Keywords

Navigation