Skip to main content
Log in

Effect of polymorphisms in the CSN3 (κ-casein) gene on milk production traits in Chinese Holstein Cattle

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This study was designed to evaluate significant associations between single nucleotide polymorphisms (SNPs) and milk composition and milk production traits in Chinese Holstein cows. Six SNPs were identified in the κ-casein gene using pooled DNA sequencing. The identified SNPs were genotyped by Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) methods from 507 individuals. Out of six, we identified three non-synonymous SNPs (g.10888T>C, g.10924C>A and g.10944A>G) that changed in the protein product. SIFT (Sorting_Intolerant_From_Tolerant) prediction score (0.01) demonstrated that protein changed Isoleucine > Threonine (g.10888T>C) will affect the phenotypes. Significant associations between identified SNPs and three yield traits (milk, protein and fat) and two composition traits (fat and protein percentages) were found whereas it did not reach significance for fat percentage in haplotypes association. Importantly, the significant SNPs in our results showed a large proportion of the phenotypic variation of milk protein yield and concentration. Our results suggest that CSN3 is an important candidate gene that influences milk production traits, and identified polymorphisms and haplotypes could be used as a genetic marker in programs of marker-assisted selection for the genetic improvement of milk production traits in dairy cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Groenen MAM, Van der Poel JJ (1994) Regulation of expression of milk protein genes: a review. Livest Prod Sci 38(2):61–78

    Article  Google Scholar 

  2. Roginski H, Fuquay JW, Fox PF (2003) Encyclopedia of dairy sciences, vol 1–4. Academic Press, London

    Google Scholar 

  3. Eigel WN, Butler JE, Ernstrom CA, Farrell HM Jr, Harwalkar VR, Jenness R, Whitney RML (1984) Nomenclature of proteins of cow’s milk: fifth revision1. J Dairy Sci 67(8):1599–1631

    Article  CAS  Google Scholar 

  4. Fiat AM, Jollès P (1989) Caseins of various origins and biologically active casein peptides and oligosaccharides: structural and physiological aspects. Mol Cell Biochem 87(1):5–30

    Article  PubMed  CAS  Google Scholar 

  5. Macciotta NP, Mele M, Conte G, Serra A, Cassandro M, Dal Zotto R, Borlino AC, Pagnacco G, Secchiari P (2008) Association between a polymorphism at the stearoyl CoA desaturase locus and milk production traits in Italian Holsteins. J Dairy Sci 91(8):3184–3189. doi:10.3168/jds.2007-0947

    Article  PubMed  CAS  Google Scholar 

  6. Schennink A, Bovenhuis H, Leon-Kloosterziel KM, van Arendonk JA, Visker MH (2009) Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Anim Genet 40(6):909–916. doi:10.1111/j.1365-2052.2009.01940.x

    Article  PubMed  CAS  Google Scholar 

  7. Komisarek J, Dorynek Z (2009) Effect ofABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. J Appl Genet 50(2):125–132

    Article  PubMed  CAS  Google Scholar 

  8. Daw EW, Heath SC, Lu Y (2005) Single-nucleotide polymorphism versus microsatellite markers in a combined linkage and segregation analysis of a quantitative trait. BMC Genet 6(Suppl 1):S32

    Article  PubMed  PubMed Central  Google Scholar 

  9. Georges M (2007) Mapping, fine mapping, and molecular dissection of quantitative trait loci in domestic animals. Annu Rev Genomics Hum Genet 8:131–162

    Article  PubMed  CAS  Google Scholar 

  10. Brym P, Kaminski S, Wojcik E (2005) Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits. J Appl Genet 46(2):179–185

    PubMed  Google Scholar 

  11. Vallet JL, Freking BA, Leymaster KA, Christenson RK (2005) Allelic variation in the secreted folate binding protein gene is associated with uterine capacity in swine. J Anim Sci 83(8):1860–1867

    PubMed  CAS  Google Scholar 

  12. Horin P, Osickova J, Necesankova M, Matiasovic J, Musilova P, Kubickova S, Hubertova D, Vyskocil M, Rubes J (2008) Single nucleotide polymorphisms of interleukin-1 beta related genes and their associations with infection in the horse. Dev Biol (Basel) 132:347–351

    CAS  Google Scholar 

  13. Craig DW, Stephan DA (2005) Applications of whole-genome high-density SNP genotyping. Expert Rev Mol Diagn 5(2):159–170

    Article  PubMed  CAS  Google Scholar 

  14. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Collins FS, Guyer MS, Chakravarti A (1997) Variations on a theme: cataloging human DNA sequence variation. Science 278(5343):1580–1581

    Article  PubMed  CAS  Google Scholar 

  16. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science-AAAS-Weekly Paper Edition 273(5281):1516–1517

    CAS  Google Scholar 

  17. Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61–80

    Article  PubMed  CAS  Google Scholar 

  18. Lien S, Rogne S (1993) Bovine casein haplotypes: number, frequencies and applicability as genetic markers. Anim Genet 24(5):373–376

    Article  PubMed  CAS  Google Scholar 

  19. Kumar D, Gupta N, Ahlawat SPS, Satyanarayana R, Sunder S, Gupta SC (2006) Single strand confirmation polymorphism (SSCP) detection in exon l of the -lactalbumin gene of Indian Jamunapari milk goats (Capra hircus). Genet Mol Biol 29(2):287–289

    Article  CAS  Google Scholar 

  20. Pedersen J (1991) Selection to increase frequency of kappa casein variant B in dairy cattle. J Anim Breed Genet 108(16):434–445

    Article  Google Scholar 

  21. Neelin JM (1964) Variants of [kappa]-casein revealed by improved starch gel electrophoresis1. J Dairy Sci 47(5):506–509

    Article  CAS  Google Scholar 

  22. Eggena FR (1989) Die Untersuchung von Kasein genen mittels DNA-Analyse. ETH Lan-dwirtschaft Schweb 2:231–235

    Google Scholar 

  23. Threadgill DW, Womack JE (1990) Genomic analysis of the major bovine milk protein genes. Nucleic Acids Res 18(23):6935–6942

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Hayes HC, Petit EJ (1993) Mapping of the beta-lactoglobulin gene and of an immunoglobulin M heavy chain-like sequence to homoeologous cattle, sheep, and goat chromosomes. Mamm Genome 4(4):207–210

    Article  PubMed  CAS  Google Scholar 

  25. Huang W, Penagaricano F, Ahmad KR, Lucey JA, Weigel KA, Khatib H (2012) Association between milk protein gene variants and protein composition traits in dairy cattle. J Dairy Sci 95(1):440–449

    Article  PubMed  CAS  Google Scholar 

  26. Nilsen H, Olsen H, Hayes B, Sehested E, Svendsen M, Nome T, Meuwissen T, Lien S (2009) Casein haplotypes and their association with milk production traits in Norwegian Red cattle. Genet Sel Evol 41(1):24–36

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schopen GCB, Visker M, Koks PD, Mullaart E, van Arendonk JAM, Bovenhuis H (2011) Whole-genome association study for milk protein composition in dairy cattle. J Dairy Sci 94(6):3148–3158

    Article  PubMed  CAS  Google Scholar 

  28. Bonfatti V, Cecchinato A, Gallo L, Blasco A, Carnier P (2011) Genetic analysis of detailed milk protein composition and coagulation properties in Simmental cattle. J Dairy Sci 94(10):5183–5193

    Article  PubMed  CAS  Google Scholar 

  29. Ikonen T, Ojala M, Syvaoja EL (1997) Effects of composite casein and -lactoglobulin genotypes on renneting properties and composition of bovine milk by assuming an animal model. Agric Food Sci Finl 6(4):283–294

    CAS  Google Scholar 

  30. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  31. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Scientific and Technical, New York

    Google Scholar 

  32. Martin P, Szymanowska M, Zwierzchowski L, Leroux C (2002) The impact of genetic polymorphisms on the protein composition of ruminant milks. Reprod Nutr Dev 42(5):433–460

    Article  PubMed  CAS  Google Scholar 

  33. Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swaisgood HE (2004) Nomenclature of the proteins of cows’ milk–sixth revision. J Dairy Sci 87(6):1641–1674

    Article  PubMed  CAS  Google Scholar 

  34. Coolbear KP, Elgar DF, Ayers JS (1996) Profiling of genetic variants of bovine κ-casein macropeptide by electrophoretic and chromatographic techniques. Int Dairy J 6(11):1055–1068

    Article  CAS  Google Scholar 

  35. Neubauerová V (2001) Detection of genetic markers and possibility of their use in cattle and other subungulates. University of South Bohemia, Ceske Budejovice

    Google Scholar 

  36. Strzalkowska N, Krzyzewski J, Zwierzchowski L, Ryniewicz Z (2002) Effects of kappa-casein and beta-lactoglobulin loci polymorphism, cows’ age, stage of lactation and somatic cell count on daily milk yield composition in Polish Black-and-White cattle. Anim Sci Pap Rep 20(1):21–35

    CAS  Google Scholar 

  37. Caroli A, Chessa S, Bolla P, Budelli E, Gandini GC (2004) Genetic structure of milk protein polymorphisms and effects on milk production traits in a local dairy cattle. J Anim Breed Genet 121(2):119–127

    Article  CAS  Google Scholar 

  38. Ng-Kwai-Hang KF, Hayes JF, Moxley JE, Monardes HG (1984) Association of genetic variants of casein and milk serum proteins with milk, fat, and protein production by dairy cattle. J Dairy Sci 67(4):835–840

    Article  PubMed  CAS  Google Scholar 

  39. Van Eenennaam AL, Medrano JF (1991) Differences in allelic protein expression in the milk of heterozygous [kappa]-casein cows. J Dairy Sci 74(5):1491–1496

    Article  Google Scholar 

  40. Addeo F, Mercier JC (1977) Primary structure of the casein macropeptide of k-casein of buffalo. Biochimie 59:375–379

    Article  PubMed  CAS  Google Scholar 

  41. Chessa S, Chiatti F, Ceriotti G, Caroli A, Consolandi C, Pagnacco G, Castiglioni B (2007) Development of a single nucleotide polymorphism genotyping microarray platform for the identification of bovine milk protein genetic polymorphisms. J Dairy Sci 90(1):451–464

    Article  PubMed  CAS  Google Scholar 

  42. Dogru U, Ozdemir M (2009) Genotyping of kappa-casein locus by PCR-RFLP in brown swiss cattle breed. J Anim Vet Adv 8(4):779–781

    CAS  Google Scholar 

  43. Ma X, Wang X, Hu G, Ma G, Zhao J, Peng C, Chang G (2007) Analysis of genetic polymorphisms at κ-CN Exon 4 and Exon 5 in southern Chinese Holstein Cattle. China Dairy Cattle 2:5–8

    Google Scholar 

  44. Hamza AE, Yang ZP, Wang XL, Chen RJ, Wu HT, Ibrahim AI (2010) The impact of kappa casein gene polymorphism on milk components and other productive performance traits of Chinese Holstein Cattle. Pak Vet J 31(2):153–156

    Google Scholar 

  45. Matjíek A, Matjíková J, mcová NE, Jandurová OM, Štípková M, Bouška J, Frelich J (2007) Joint effects of CSN3 and LGB genotypes and their relation to breeding values of milk production parameters in Czech Fleckvieh. Czech J Anim Sci 52:83–87

    Google Scholar 

  46. Bartonova P, Vrtkova I, Kaplanova K, Urban T (2012) Association between CSN3 and BCO2 gene polymorphisms and milk performance traits in the Czech Fleckvieh cattle breed. Genet Mol Res 11(2):1058–1063

    Article  PubMed  CAS  Google Scholar 

  47. Meredith BK, Kearney FJ, Finlay EK, Bradley DG, Fahey AG, Berry DP, Lynn DJ (2012) Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genet 13(1):21–32

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Bonfatti V, Di Martino G, Cecchinato A, Vicario D, Carnier P (2010) Effects of β-k-casein (CSN2-CSN3) haplotypes and β-lactoglobulin (BLG) genotypes on milk production traits and detailed protein composition of individual milk of Simmental cows. J Dairy Sci 93(8):3797–3808

    Article  PubMed  CAS  Google Scholar 

  49. Ikonen T, Bovenhuis H, Ojala M, Ruottinen O, Georges M (2001) Associations between casein haplotypes and first lactation milk production traits in Finnish Ayrshire cows. J Dairy Sci 84(2):507–514

    Article  PubMed  CAS  Google Scholar 

  50. Boettcher PJ, Caroli A, Stella A, Chessa S, Budelli E, Canavesi F, Ghiroldi S, Pagnacco G (2004) Effects of casein haplotypes on milk production traits in Italian Holstein and Brown Swiss cattle. J Dairy Sci 87(12):4311–4317

    Article  PubMed  CAS  Google Scholar 

  51. Sun D, Jia J, Ma Y, Zhang Y, Wang Y, Yu Y (2009) Effects of DGAT1 and GHR on milk yield and milk composition in the Chinese dairy population. Anim Genet 40(6):997–1000

    Article  PubMed  CAS  Google Scholar 

  52. Becker T, Herold C (2009) Joint analysis of tightly linked SNPs in screening step of genome-wide association studies leads to increased power. Eur J Hum Genet 17(8):1043–1049

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Wang X, Morris NJ, Schaid DJ, Elston RC (2012) Power of single-vs. multi-marker tests of association. Genet Epidemiol 36(5):480–487

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li J, Das K, Fu G, Li R, Wu R (2011) The Bayesian lasso for genome-wide association studies. Bioinformatics 27(4):516–523

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Schaid DJ (2004) Evaluating associations of haplotypes with traits. Genet Epidemiol 27(4):348–364

    Article  PubMed  Google Scholar 

  56. Ju Z, Li Q, Wang H, Li J, An O, Yang W, Zhong JFW (2009) Polymorphisms of κ-casein gene exon4 and exon 5 and its Association with milk production traits in Chinese Holsteins cattle. Sci Agric Sin 9:3279–3287

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology Programs of China (2011BAD28B02, 2012BAD12B01, 2013AA102504), Beijing Dairy Industry Innovation Team, Beijing Research and Technology program (D121100003312001) and Program for Changjiang Scholar and Innovation Research Team in University (IRT1191). The authors also would like to thank Dr. David Rheinheimer, Post-doctoral Researcher, Wuhan University, for his assistance with English expression and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. X. Sun.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alim, M.A., Dong, T., Xie, Y. et al. Effect of polymorphisms in the CSN3 (κ-casein) gene on milk production traits in Chinese Holstein Cattle. Mol Biol Rep 41, 7585–7593 (2014). https://doi.org/10.1007/s11033-014-3648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3648-x

Keywords

Navigation