Skip to main content
Log in

PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of PPAR-α intron 7G>C and PPARGC1A gene Gly482Ser polymorphisms on aerobic performance of elite level endurance athletes. This study was carried out on 170 inviduals (60 elite level endurance athletes and 110 sedentary controls). Aerobic performance of athletes and sedentary control groups were defined by maximal oxygen uptake capacity. DNA was isolated from peripheral blood using GeneJet Genomic DNA Purification kit. Genotyping of the PPAR-α intron 7G>C and PPARGC1A Gly482Ser polymorphisms was performed using PCR–RFLP methods, and statistical evaluations were carried out using SPSS 15.0. Mean age of athletes were 21.38 ± 2.83 (18–29) and control mean age were 25.92 ± 4.88 (18–35). Mean maximal oxygen consumption of athletes were 42.14 ± 7.6 ml/(kg min) and controls were 34.33 ± 5.43 ml/(kg min). We found statistically significant differences between the athlete and control groups with respect to both PPAR-α and PPARGC1A genotype distributions (p = 0.006, <0.001, respectively) and allele frequencies (<0.001, <0.001, respectively). Additionally, when we examined PPAR-α and PPARGC1A genotype distributions according to the aerobic performance test parameters, we found a statistically significant association between velocity, time and maximal oxygen consumption and PPAR-α and PPARGC1A genotypes (p < 0.001). To our knowledge, this is the first study in Turkey examined PPAR-α intron 7G>C and PPARGC1A Gly482Ser gene polymorphisms in elite level endurance athletes. Our results suggest that PPAR-α and PPARGC1A genes have strong effect on aerobic performance of elit level athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collins M (2009) Genetics and sports, 2nd edn. Karger, Basel, pp 43–101

    Book  Google Scholar 

  2. Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON et al (2009) The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet 126:751–761

    Article  CAS  PubMed  Google Scholar 

  3. Ahmetov II, Mozhayskaya IA, Flavell DM, Astratenkova IV, Komkova IA, Lyubaeva EV et al (2006) PPARa gene variation and physical performance in Russian athletes. Eur J Appl Physiol 97:103–108

    Article  CAS  PubMed  Google Scholar 

  4. Bouchard C, Malina RM (1998) Genetics of physiological fitness and motor performance. Exerc Sport Sci Rev 11:306–339

    Article  Google Scholar 

  5. Montgomery HE, Marshall R, Hemingway H et al (1998) Human gene for physical performance. Nature 393:221–222

    Article  CAS  PubMed  Google Scholar 

  6. Collins M, Xenophonotos SL, Cariolou MA et al (2004) The ACE gene and endurance performance during the South Africa Ironman Triathlons. Med Sci Sports Exerc 36(8):1314–1320

    Article  CAS  PubMed  Google Scholar 

  7. Woods DR, Humphries SE, Montgomery HE (2000) The ACE I/D polymorphism and human physical performance. Trends Endocrinol Metab 11(10):416–420

    Article  CAS  PubMed  Google Scholar 

  8. Moran CN, Yang N, Bailey MES et al (2006) Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet 15(1):88–93

    Article  PubMed  Google Scholar 

  9. Yang N, MacArthur DG, Gulbin JP et al (2003) ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet 73(3):627–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by PPARδ. PLoS Biol 2:e294

    Article  PubMed Central  PubMed  Google Scholar 

  11. Pilegaard H, Richter EA (2008) PGC-1α: important for exercise performance? J Appl Physiol 104:1264–1265

    Article  PubMed  Google Scholar 

  12. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal b-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887

    Article  CAS  PubMed  Google Scholar 

  13. Schmitt B, Fluck M, Decombaz J (2003) Transcriptional adaptations of lipid metabolism in tibialis anterior muscle of endurance-trained athletes. Physiol Genomics 15:148–157

    Article  CAS  PubMed  Google Scholar 

  14. Flavell DM, Jamshidi Y, Hawe E, Torra IP, Taskinen MR, Frick MH et al (2002) Peroxisome proliferatoractivated receptor a gene variants influence progression of coronary atherosclerosis and risk of coronary artery disease. Circulation 105:1440–1445

    Article  CAS  PubMed  Google Scholar 

  15. Pacholczyk M, Ferenc T, Kowalski J (2008) The metabolic syndrome. Part II:its mechanism, development and its complications. Poste,py Higieny Medycyny Dos wiadczalnej 62:543–558

    Google Scholar 

  16. Guerre-Millo s, Gervois P, Raspe E, Madsen L, Poulain P, Derudas B et al (2000) Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem 275:16638–16642

    Article  CAS  PubMed  Google Scholar 

  17. Kliewer SA, Xu HE, Lambert MH, Willson TM (2001) Peroxisome proliferator activated receptors: from genes to physiology. Recent Prog Horm Res 56:239–265

    Article  CAS  PubMed  Google Scholar 

  18. Eynon N, Meckel Y, Sagiv M, Yamin C, Amir R, Sagiv M, Goldhammer E, Duarte JA, Oliveira J (2010) Do PPARGC1A and PPARα polymorphisms influence sprint or endurance phenotypes? Scand J Med Sci Sports 20:e145–e150

    Article  CAS  PubMed  Google Scholar 

  19. http://www.newtest.com/Docs/Powertimer%20SW-300.pdf

  20. Dean, A.G., Sullivan, K.M., Soe MM, OpenEpi. ‘Open source epidemiologic statistics for public health’ version 2.3.1 www.OpenEpi.com.updated 2010/19.09.accessed 2011/02/21

  21. Hopkins WG, Schabort EJ, Hawley JA (2001) Reliability of power in physical performance tests. Sports Med 31(3):211–234

    Article  CAS  PubMed  Google Scholar 

  22. Rogozkin VA, Nazarov IB, Kazakov VK (2000) Genetic markers of physical performance. Theory Pract Phys Cult 12:34–36

    Google Scholar 

  23. Montgomery H, Clarkson P, Barnard M et al (1999) Angiotensin converting enzyme gene insertion/deletion polymorphism and response to physical training. Lancet 353:541–545

    Article  CAS  PubMed  Google Scholar 

  24. Woods D, Hickman M, Jamshidi Y et al (2001) Elite swimmers and the D allele of the ACE I/D polymorphism. Hum Genetics 108:230–232

    Article  CAS  Google Scholar 

  25. Braissant O, Foufelle F, Scottoc, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs). Tissue distribution of PPAR-alpha,beta, and gamma in the adult rat. Endocrinology 137:354–366

    CAS  PubMed  Google Scholar 

  26. Liang H, Ward WF (2006) PGC-1 α: a key regulator of energy metabolism. Adv Physiol Educ 30:145–151

    Article  PubMed  Google Scholar 

  27. Lucia A, Gomez-Gallego F, Barroso I, Rabadan M, Bandres F, San Juan AF, Chicharro JL, Ekelund U, Brage S, Earnest CP, Wareham NJ, Franks PW (2005) PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J Appl Physiol 99:344–348

    Article  CAS  PubMed  Google Scholar 

  28. Broos S, Windelinckx A, Mars GD, Huygens W, Peeters MW, Aerssens J, Vlietinck R, Beunen GP, thomis MA. Is PPARα intron 7 G/C polymorphism associated with muscle strength characteristics in nonathletic young men? Scand J Med Sci Sports. 2011;1–7

  29. Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M et al (2002) Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 283:66–72

    Article  Google Scholar 

  30. Pilegaard H, Saltin B, Neufer PD (2003) Exercise inducestransient transcriptional activation of the PGC-1α gene in human skeletal muscle. J Physiol 546:851–858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Short KR, Vittone JL, Bigelow ML, Proctor DN, Rızza RA, Coenen-Schimken JM, Noir KS (2003) Impact of aerobic exercise training on age related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896

    Article  CAS  PubMed  Google Scholar 

  32. Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustaffsson T (2004) PGC-1 alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 96:189–194

    Article  CAS  PubMed  Google Scholar 

  33. Mathai AS, Bonen A, Benton CR, Robinson DL, Graham TE (2008) Rapid exercise induced changes in PGC-1{alpha} mRNA and protein in human skeletal muscle. J Appl Physiol 105:1098–1105

    Article  CAS  PubMed  Google Scholar 

  34. Lin J, Wu H, Tair PT, Zhang CY, Wu Z, Boss O, Michael LF, Puigserver P, İsotoni E, Olson EN, Lowell BB, Basel-Dubby R, Spiegelman BM (2002) Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibers. Nature 418:797–801

    Article  CAS  PubMed  Google Scholar 

  35. Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Deriaz O (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferatoractivated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle. Diabetes 52:2874–2881

    Article  CAS  PubMed  Google Scholar 

  36. Cieszczyk P, Sawzcuk M, Maciejewska A (2011) Ficek K,&Eider J. Variation in peroxisome proliferator activated receptor α gene in elite combat athletes. Eur J Sport Sci 11(2):119–123

    Article  Google Scholar 

  37. He Z, Hu Y, Feng L, Bao D, Wang L, Li Y, wang J, Liu G, Xi Y, Wen L, Lucia A (2008) Is there an association between PPARGC1A genotypes and endurance capacity in Chinese men? Scan J Med Sci Sports 18:195–204

    Article  CAS  Google Scholar 

  38. Maciejeswka A, Sawczuk M, Cieszczyk P, Mozhayskaya IA, Ahmetov II (2012) The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J Sports 30(1):101–113

    Article  Google Scholar 

  39. Maciejeswka A, Sawczuk M, Cieszczyk P (2011) Variation in the PPARα gene in Polish rowers. J Sci Med Sport 14:58–64

    Article  Google Scholar 

  40. Gineviciene V, Jakaitiene A, Tubelis L& Kucinskas V. Variation in the ACE, PPARGC1A and PPARA genes in Lithuainian football players. European J of Sport Science. 2012; 1–7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Tural.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tural, E., Kara, N., Agaoglu, S.A. et al. PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol Biol Rep 41, 5799–5804 (2014). https://doi.org/10.1007/s11033-014-3453-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3453-6

Keywords

Navigation