Skip to main content
Log in

Polymorphisms in twelve candidate genes are associated with growth, muscle lipid profile and meat quality traits in eleven European cattle breeds

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Current customers’ demands focus on the nutritional and sensory quality of cattle meat. Candidate gene approach allows identification of genetic polymorphisms that have a measurable effect on traits of interest. The aim of this work is to identify new molecular markers for beef production through an association study using 27 candidate genes and 314 purebred bulls from 11 European cattle breeds. Twelve genes were found associated with different lipid and meat quality traits, and among these stand out the considerable effect of CAST on fatness score, CGGBP1 on growth traits, HSPB1 on the percentage of lauric acid (12:0) and phospholipid docosahexaenoic acid (DHA 22:6 n − 3), RORA on the ratio of light absorption (K) to light scattering (S) (K/S), and TNFA on lightness (L*). Most of these traits are related to post-mortem muscle biochemical changes, which are key factors controlling meat quality and consumers’ acceptance. Also, the variations produced on muscle fatty acid profiles, such as those of AANAT, CRH, CSN3, HSPB1, and TNFA, give insights into the genetic networks controlling these complex traits and the possibility of future improvement of meat nutritional quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Givens DI, Gibbs RA (2008) Current intakes of EPA and DHA in European populations and the potential of animal-derived foods to increase them. Proc Nutr Soc 67:273–280

    Article  CAS  Google Scholar 

  2. McAfee AJ, McSorley EM, Cuskelly GJ, Moss BW, Wallace JM, Bonham MP, Fearon AM (2010) Red meat consumption: an overview of the risks and benefits. Meat Sci 84:1–13

    Article  CAS  PubMed  Google Scholar 

  3. Hocquette JF, Lehnert S, Barendse W, Cassar-Malek I, Picard B (2007) Recent advances in cattle functional genomics and their application to beef quality. Animal 1:159–173

    Article  CAS  PubMed  Google Scholar 

  4. Aaslyng MD (2009) Trends in meat consumption and the need for fresh meat and meat products of improved quality. In: Kerry JP, Ledward D (eds) Improving the sensory and nutritional quality of fresh meat. Woodhead Publishing Ltd, Cambridge, pp 3–18

    Chapter  Google Scholar 

  5. Simm G, Lambe N, Bünger L, Navajas E, Roehe R (2009) Use of meat quality information in breeding programmes. In: Kerry JP, Ledward D (eds) Improving the sensory and nutritional quality of fresh meat. Woodhead Publishing Ltd, Cambridge, p 680

    Google Scholar 

  6. Ron M, Weller JI (2007) From QTL to QTN identification in livestock—winning by points rather than knock-out: a review. Anim Gen 38:429–439

    Article  CAS  Google Scholar 

  7. Albertí P, Panea B, Sañudo C, Olleta JL, Ripoll G, Ertbjerg P, Christensen M, Gigli S, Failla S, Concetti S, Hocquette JF, Jailler R, Rudel S, Renand G, Nute GR, Richardson RI, Williams JL (2008) Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livest Sci 114:19–30

    Article  Google Scholar 

  8. Christensen M, Ertbjerg P, Failla S, Sañudo C, Richardson RI, Nute GR, Olleta JL, Panea B, Albertí P, Juárez M, Hocquette JF, Williams JL (2011) Relationship between collagen characteristics, lipid content and raw and cooked texture of meat from young bulls of fifteen European breeds. Meat Sci 87:61–65

    Article  PubMed  Google Scholar 

  9. Page BT, Casas E, Heaton MP, Cullen NG, Hyndman DL, Morris CA, Crawford AM, Wheeler TL, Koohmaraie M, Keele JW, Smith TPL (2002) Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J Anim Sci 80:3077–3085

    CAS  PubMed  Google Scholar 

  10. White NS, Casas TLE, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, Chase CC, Johnson DD, Keele JW, Smith TPL (2005) A new single nucleotide polymorphism in CAPN1 extends the current tenderness market test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J Anim Sci 83:2001–2008

    CAS  PubMed  Google Scholar 

  11. Barendse WJ (2002) DNA markers for meat tenderness. Patent application WO02064820

  12. Buchanan FC, Thue TD, Yu P, Winkelman-Sim DC (2005) Single nucleotide polymorphisms in the corticotrophin-releasing hormone and pro-opiomelanocortin genes are associated with growth and carcass yield in beef cattle. Anim Genet 36:127–131

    Article  CAS  PubMed  Google Scholar 

  13. Kaminski S (1996) Bovine kappa-casein (CASK) gene—molecular nature and application in dairy cattle breeding. J Appl Genet 37:179–196

    Google Scholar 

  14. Blott S, Kim J, Moisio S, Schmidt-Küntzel A, Cornet A, Berzi P, Cambisano N, Ford C, Grisart B, Johnson D, Karim L, Simon P, Snell R, Spelman R, Wong J, Vilkki J, Georges M, Farnir F, Coppieters W (2003) Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics 163:253–266

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Aschaffenburg R, Drewry J (1957) Genetics of the b-lactoglobulins of cow’s milk. Nature 180:376–378

    Article  CAS  PubMed  Google Scholar 

  16. Thue TD, Buchanan FC (2002) Linkage mapping of POMC to bovine chromosome 11. Anim Genet 34:146–160

    Google Scholar 

  17. Barendse WJ, Bunch RJ, Kijas JW, Thomas MB (2007) The effect of genetic variation of the retinoic acid receptor-related orphan receptor C gene on fatness in cattle. Genetics 175:843–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Barendse WJ (1999) Assessing lipid metabolism. Patent application WO023248

  19. Sevane N, Crespo I, Cañón J, Dunner S (2011) A primer extension assay for simultaneous use in cattle genotype assisted selection, parentage and traceability analysis. Livest Sci 137:141–150

    Article  Google Scholar 

  20. Bates D, Maechler M (2008) The Comprehensive R Archive Network. http://cran.r-project.org/. Accessed Jan 2012

  21. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  23. Bernard C, Cassar-Malek I, Le Cunff M, Dubroeucq H, Renand G, Hocquette JF (2007) New indicators of beef sensory quality revealed by expression of specific genes. J Agric Food Chem 55:5229–5237

    Article  CAS  PubMed  Google Scholar 

  24. Abbasvali M, Shekarforoush SS, Aminlari M, Ebrahimnejad H (2012) Effects of medium-voltage electrical stimulation on postmortem changes in fat-tailed sheep. J Food Sci 77:S47–S53

    Article  CAS  PubMed  Google Scholar 

  25. Braggins TJ (1996) Effect of stress-related changes in sheepmeat ultimate pH on cooked odor and flavor. J Agric Food Chem 44:2352–2360

    Article  CAS  Google Scholar 

  26. MacDougall DB (1982) Changes in the colour and opacity of meat. Food Chem 9:75–88

    Article  CAS  Google Scholar 

  27. Kubelka P, Mink K, Swatland HJ (1995) On line evaluation of meat. Technomic editor, Lancaster, p 192

    Google Scholar 

  28. Swatland HJ (2004) Progress in understanding the paleness of meat with a low pH. South Afr J Anim Sci 34(supplement):2

    Google Scholar 

  29. Dunner S, Sevane N, García D, Cortés O, Valentini A, Williams JL, Mangin B, Cañón J, Levéziel H, Levéziel H, GeMQual Consortium (2013) Association of genes involved in carcass and meat quality in fifteen European bovine breeds. Livest Sci 154:34–44

    Article  Google Scholar 

  30. Patel YM, Lane MD (1999) Role of calpain in adipocyte differentiation. Proc Natl Acad Sci USA 96:1279–1284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Orho-Melander M, Klannemark M, Svensson MK, Ridderstrale M, Lindgren CM, Groop L (2002) Variants in the calpain-10 gene predispose to insulin resistance and elevated free fatty acid levels. Diabetes 51:2658–2664

    Article  CAS  PubMed  Google Scholar 

  32. Xia JJ, Berg EP, Lee JW, Yao G (2007) Characterizing beef muscles with optical scattering and absorption coefficients in VIS-NIR region. Meat Sci 75:78–83

    Article  CAS  PubMed  Google Scholar 

  33. Mancini RA, Hunt MC (2005) Current research in meat color. Meat Sci 71:100–121

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Chen YR, Ozaki Y (2000) Characterization of visible spectral intensity variations of wholesome and unwholesome chicken meats with two-dimensional correlation spectroscopy. Appl Spectrosc 54:587–594

    Article  CAS  Google Scholar 

  35. Ribeca C, Bonfatti V, Cecchinato A, Albera A, Maretto F, Gallo L, Carnier P (2012) Association of polymorphisms in calpain 1, (mu/I) large subunit, calpastatin, and cathepsin D genes with meat quality traits in double-muscled Piemontese cattle. Anim Genet. doi:10.1111/j.1365-2052.2012.02370.x

    PubMed  Google Scholar 

  36. Sibut V, Hennequet-Antier C, Le Bihan-Duval E, Marthey S, Duclos MJ, Berri C (2011) Identification of differentially expressed genes in chickens differing in muscle glycogen content and meat quality. BMC Genomics 12:112–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Gao J, Lin H, Song ZG, Jiao HC (2008) Corticosterone alters meat quality by changing pre- and post-slaughter muscle metabolism. Poult Sci 87:1609–1617

    Article  CAS  PubMed  Google Scholar 

  38. Gill JL, Bishop SC, McCorquodale C, Williams JL, Wiener P (2010) Associations between single nucleotide polymorphisms in multiple candidate genes and carcass and meat quality traits in a commercial Angus-cross population. Meat Sci 86:985–993

    Article  CAS  PubMed  Google Scholar 

  39. Thaller G, Kühn C, Winter A, Ewald G, Bellmann O, Wegner J, Zühlke H, Fries R (2003) DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet 34:354–357

    Article  CAS  PubMed  Google Scholar 

  40. Li C, Zhou G, Xu X, Zhang J, Xu S, Ji Y (2006) Effects of marbling on meat quality characteristics and intramuscular connective tissue of beef Longissimus muscle. Asian-Aust J Anim Sci 19:1799–1808

    Article  Google Scholar 

  41. Singh U, Roswall P, Uhrbom L, Westermark B (2011) CGGBP1 regulates cell cycle in cancer cells. BMC Mol Biol 7:12–28

    CAS  Google Scholar 

  42. Singh U, Westermark B (2011) CGGBP1 is a nuclear and midbody protein regulating abscission. Exp Cell Res 317:143–150

    Article  CAS  PubMed  Google Scholar 

  43. Fagali N, Catalá A (2007) The effect of melatonin and structural analogues on the lipid peroxidation of triglycerides enriched in ω-3 polyunsaturated fatty acids. Life Sci 81:299–305

    Article  CAS  PubMed  Google Scholar 

  44. Pérez R, Cañón J, Dunner S (2010) Genes associated with long-chain omega-3 fatty acids in bovine skeletal muscle. J Appl Genet 51:479–487

    Article  PubMed  Google Scholar 

  45. Casas E, White S, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, Chase CC Jr, Johnson DD, Smith TP (2006) Effects of calpastatin and mu-calpain markers in beef cattle on tenderness traits. J Anim Sci 84:520–525

    Article  CAS  PubMed  Google Scholar 

  46. Reardon W, Mullen AM, Sweeney T, Hamill RM (2010) Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine M. longissimus and M. semimembranosus. Meat Sci 86:270–275

    Article  CAS  PubMed  Google Scholar 

  47. Parton RG, Way M, Zorzi N, Stang E (1997) Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 136:137–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Calonge ME (2004) Identificación de genes con expresión diferencial en tejido muscular de bovinos pertenecientes a los tres genotipos de la miostatina (mutación nt821(del11)). PhD Universidad Complutense de Madrid

  49. Solinas G, Summermatter S, Mainieri D, Gubler M, Montani JP, Seydoux J, Smith SR, Dulloo AG (2006) Corticotropin-releasing hormone directly stimulates thermogenesis in skeletal muscle possibly through substrate cycling between de novo lipogenesis and lipid oxidation. Endocrinology 147:31–38

    Article  CAS  PubMed  Google Scholar 

  50. Barroso A, Dunner S, Cañón J (1999) Polimorfismo genético de las lactoproteínas de los rumiantes domésticos-Revisión. Inf Téc Econ Agrar 2:143–179

    Google Scholar 

  51. Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD (1999) Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet 21:119–122

    Article  CAS  PubMed  Google Scholar 

  52. Lau P, Nixon SJ, Parton RG, Muscat GEO (2004) RORa regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells. J Biol Chem 279:36828–36840

    Article  CAS  PubMed  Google Scholar 

  53. Klar J, Asling B, Carlsson B, Ulvsbäck M, Dellsén A, Ström C, Rhedin M, Forslund A, Annerén G, Ludvigsson JF, Dahl N (2005) RAR-related orphan receptor A isoform 1 (RORa1) is disrupted by a balanced translocation t(4;15)(q22.3;q21.3) associated with severe obesity. Eur J Hum Genet 13:928–934

    Article  CAS  PubMed  Google Scholar 

  54. Keso T, Perola M, Laippala P, Ilveskoski E, Kunnas TA, Mikkelsson J, Penttilä A, Hurme M, Karhunen PJ (2001) Polymorphisms within the tumor necrosis factor locus and prevalence of coronary artery disease in middle-aged men. Atherosclerosis 154:691–697

    Article  CAS  PubMed  Google Scholar 

  55. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell B 37:1974–1984

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an EC grant QLK5 – CT2000-0147.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S. Dunner.

Additional information

The members of GemQual Consortium is listed in Appendix.

Electronic supplementary material

Appendix

Appendix

GeMQual Consortium: Albertí P Centro de Investigación y Tecnología Agroalimentaria, Gobierno de Aragón, 50080, Zaragoza, Spain; Amarger V. Delourme D. Levéziel H. INRA, UMR 1061, 87000 Limoges, France and Université de Limoges, UMR 1061, 87000 Limoges; Boitard S. Mangin B. INRA Chemin de Borde-Rouge-Auzeville, BP 52627, 31326 Castanet-Tolosan cedex, France; Cañón J. Checa ML. Dunner S. García D. Miranda ME. Pérez R. Dpto de Producción Animal, Facultad de Veterinaria, 28040 Madrid, Spain; Christensen M. Ertbjerg P. Department of Food Science, University of Copenhagen, 1958 Frederiksberg C., Denmark; Crisá A. Marchitelli C. Valentini A. Dipartimento di Produzioni Animali, Università della Tuscia, via De Lellis, 01100 Viterbo, Italy; Failla S. Gigli S. CRA, Istituto Sperimentale per la Zootecnia, 00016 Monterotondo, Italy; Hocquette JF. INRA, UR1213, Unité de Recherches sur les Herbivores, Centre de Clermont-Ferrand/Theix F-63122, France; Nute G., Richardson I. Division of Farm Animal Science, University of Bristol, BS40 5DU, United Kingdom; Olleta JL., Panea B., Sañudo C.  Dept de Producción Animal y Ciencia de los Alimentos, Universidad de Zaragoza, 50013, Zaragoza, Spain; Razzaq N. Roslin Institute, Roslin, Midlothian, Scotland. EH25 9PS, UK; Renand G. INRA, UR337, Station de Génétique Quantitative et Appliquée, 78352 Jouy-en-Josas cedex, France; Williams. JL. Parco Tecnologico Padano, Via Einstein, Polo Universitario, 26900 Lodi, Italy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevane, N., Armstrong, E., Wiener, P. et al. Polymorphisms in twelve candidate genes are associated with growth, muscle lipid profile and meat quality traits in eleven European cattle breeds. Mol Biol Rep 41, 4721–4731 (2014). https://doi.org/10.1007/s11033-014-3343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3343-y

Keywords

Navigation