Skip to main content
Log in

Microarray analysis of differentially expressed genes engaged in fruit development between table and wine grape

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Microarray analysis of genes can provide individual gene-expression profiles and new insights for elucidating biological mechanisms responsible for fruit development. To obtain an overall view on expression profiles of metabolism-related genes involved in fruit development of table and wine grapes, a microarray system comprising 15,403 ESTs was used to compare the expressed genes. The expression patterns from the microarray analysis were validated with quantitative real-time polymerase chain reaction analysis of 18 selected genes of interest. During the entire fruit development stage, 2,493 genes exhibited at least 2.0-fold differences in expression levels with 1,244 genes being up-regulated and 1,249 being down-regulated. Following gene ontology analysis, only 929 differentially expressed (including 403 up-regulated and 526 down-regulated) genes were annotated in table and wine grapes. These differentially expressed genes were found to be mainly involved in carbohydrate metabolism, biosynthesis of secondary metabolites as well as energy, lipid and amino acid metabolism via KEGG. Our results provide new insights into the molecular mechanisms and expression profiles of genes in the fruit development stage of table and wine grapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

MDH:

Malate dehydrogenase

TCA cycle:

Tricarboxylic acid cycle

References

  1. Peng FY, Reid KE, Liao N, Schlosser J, Lijavetzky D, Holt R, Martínez Zapater JM, Jones S, Marra M, Bohlmann J, Lund ST (2007) Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat Hamburg) and discovery of new candidate genes with potential roles in berry development. Gene 402:40–50

    Article  CAS  PubMed  Google Scholar 

  2. The French-Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468

    Article  Google Scholar 

  3. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  4. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:344–356

    Google Scholar 

  5. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1595–1604

    Article  Google Scholar 

  6. Boss PK, Vivier M, Matsumoto S, Dry IB, Thomas MR (2001) A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Mol Biol 45:541–553

    Article  CAS  PubMed  Google Scholar 

  7. Manganaris GA, Ziliotto F, Rasori A, Bonghi C, Ramina A, Tonutti P (2010) A comparative transcriptomic approach to elucidate common and divergent mechanisms involved in apricot and peach fruit development and ripening. Acta Hortic 862:577–582

    Google Scholar 

  8. Wang Y, Li J, Yang J, Xia R (2011) Expression of lycopene cyclase genes and their regulation on downstream carotenoids during fruit maturation of Guoqing No. 1 Satsuma mandarin and Cara Cara navel orange. Sci Hortic 127:267–274

    Article  CAS  Google Scholar 

  9. Zhang Y, Li P, Cheng L (2010) Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem 123:1013–1018

    Article  CAS  Google Scholar 

  10. Deluc LG, Grimplet J, Wheatley MD, Tillett RD, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genom 8:492

    Google Scholar 

  11. Singh RK, Sane VU, Misra A, Ali SA, Nath P (2010) Differential expression of the mango alcohol dehydrogenase gene family during ripening. Phytochemistry 71:1485–1494

    Article  CAS  PubMed  Google Scholar 

  12. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21:10–14

    Article  CAS  PubMed  Google Scholar 

  13. Cuzin M (2001) DNA chips: a new tool for genetic analysis and diagnostics. Transfus Clin Biol 8:291–296

    Article  CAS  PubMed  Google Scholar 

  14. Ruan Y, Gilmore J, Conner T (1998) Towards Arabidopsis genome analysis: monitoring expression profiles of 1400 genes using cDNA microarrays. Plant J 15:821–833

    Article  CAS  PubMed  Google Scholar 

  15. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW (1996) Parallel human genome analysis: microarray based expression monitoring of 1000 genes. Proc Natl Acad Sci USA 93:10614–10619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Waters DLE, Holton TA, Ablett EM, Lee LS, Henry RJ (2005) cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Funct Integr Genomics 5:40–58

    Article  CAS  PubMed  Google Scholar 

  18. Ali MB, Howard S, Chen S, Wang Y, Yu O, Kovacs LG, Qiu W (2011) Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. BMC Plant Biol 11:7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lund ST, Peng FY, Nayar T, Reid KE, Schlosser J (2008) Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. Plant Mol Biol 68:301–315

    Article  CAS  PubMed  Google Scholar 

  20. Abdullahi I, Rott M (2009) Microarray immunoassay for the detection of grapevine and tree fruit viruses. J Virol Methods 160:90–100

    Article  CAS  PubMed  Google Scholar 

  21. Camps C, Kappel C, Lecomte P, Leon C, Gomes E, Coutos-Thevenot P, Delrot S (2010) A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata. J Exp Bot 61:1719–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Legay G, Marouf E, Berger D, Neuhaus JM, Mauch-Mani B, Slaughter A (2011) Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH). Eur J Plant Pathol 129:281–301

    Article  Google Scholar 

  23. Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7:111–134

    Article  CAS  PubMed  Google Scholar 

  24. Daldoul S, Guillaumie S, Reustle GM, Krczal G, Ghorbel A, Delrot S, Mliki A, Hofer MU (2010) Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. Plant Sci 179:489–498

    Article  CAS  PubMed  Google Scholar 

  25. Tillett RL, Ergül A, Albion RL, Schlauch KA, Cramer GR, Cushman JC (2011) Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets. BMC Plant Biol 11:86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Figueiredo A, Monteiro F, Fortes AM, Bonow-Rex M, Zyprian E, Sousa L, Pais MS (2012) Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. Funct Integr Genomics 12(2):379–386

    Article  CAS  PubMed  Google Scholar 

  27. Reid KR, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    Article  PubMed Central  PubMed  Google Scholar 

  28. Saavedra L, Barbas C (2003) Validated capillary electrophoresis method for small-anions measurement in wines. Electrophoresis 24:2235–2243

    Article  CAS  PubMed  Google Scholar 

  29. Alba R, Fei Z, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D’Ascenzo M, Gordon JS, Rose JKC, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J (2004) ESTs cDNA microarrays and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714

    Article  CAS  PubMed  Google Scholar 

  30. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863–14868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  32. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopaedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2△△C(T) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  35. Clarke JD, Zhu T (2006) Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems: practical considerations and perspectives. Plant J 45:630–650

    Article  CAS  PubMed  Google Scholar 

  36. Soglio V, Costa F, Molthoff JW, Weemen-Hendriks WMJ, Schouten HJ, Gianfranceschi L (2009) Transcription analysis of apple fruit development using cDNA microarrays. Tree Genet Genomes 5:685–698

    Article  Google Scholar 

  37. Naoumkina MA, Modolo LV, Huhman DV (2010) Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula. Plant Cell 22:850–866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Cui GH, Huang LQ, Tang XJ (2011) Candidate genes involved in tanshinone biosynthesis in hairy roots of Salvia miltiorrhiza revealed by cDNA microarray. Mol Biol Rep 38:2471–2478

    Article  CAS  PubMed  Google Scholar 

  39. Manrique-Trujillo SM, Ramírez-López AC, Ibarra-Laclette E, Gómez-Lim MA (2007) Identification of genes differentially expressed during ripening of banana. J Plant Physiol 164(8):1037–1050

    Article  CAS  PubMed  Google Scholar 

  40. Lee DH, Kang SG, Suh SG, Byun JK (2003) Purification and characterization of a β-galactosidase from peach (Prunus persica). Mol Cells 15:68–74

    CAS  PubMed  Google Scholar 

  41. Sekine D, Munemura I, Gao M, Mitsuhashi W, Toyomasu T, Murayama H (2006) Cloning of cDNAs encoding cell-wall hydrolases from pear (Pyrus communis) fruit and their involvement in fruit softening and development of melting texture. Physiol Plant 126:163–174

    Article  CAS  Google Scholar 

  42. Murayama H, Arikawa M, Sasaki YD, Cin V, Mitsuhashi W, Toyomasu T (2009) Effect of ethylene treatment on expression of polyuronide-modifying genes and solubilization of polyuronides during ripening in two peach cultivars having different softening characteristics. Postharvest Biol Technol 52(2):196–201

    Article  CAS  Google Scholar 

  43. Sulova Z, Baran R, Farkas V (2001) Release of complexed xyloglucan endotransglycosylase (XET) from plant cell walls by a transglycosylation reaction with xyloglucan-derived oligosaccharides. Plant Physiol Biochem 39(11):927–932

    Article  CAS  Google Scholar 

  44. Alaycdn-Luaces P, Pagano EA, Mroginski LA, Sozzi GO (2010) Activity levels of six glycoside hydrolases in apple fruit callus cultures depend on the type and concentration of carbohydrates supplied and the presence of plant growth regulators. Plant Cell Tissue Organ Cult 101(1):1–10

    Article  Google Scholar 

  45. Ortega-García F, Peragón J (2009) Phenylalanine ammonia-lyase, polyphenol oxidase, and phenol concentration in fruits of Olea europaea L. cv. Picual, Verdial, Arbequina, and Frantoio during ripening. J Agric Food Chem 57(21):10331–10340

    Article  PubMed  Google Scholar 

  46. Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of l-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16:3098–3109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Salentijn EMJ, Aharoni A, Schaart JG, Boone MJ, Krens FA (2003) Differential gene expression analysis of strawberry cultivars that differ in fruit-firmness. Physiol Plant 118:571–578

    Article  CAS  Google Scholar 

  48. Wang Y, Li J, Xia RX (2010) Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during fruit maturation of Guoqing No. 4 satsuma mandarin (Citrus unshiu Marcow). Sci Hortic 125(2):110–116

    Article  CAS  Google Scholar 

  49. Zheng YJ, Tian L, Liu HT, Pan QH, Zhan JC, Huang WD (2009) Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries. Plant Growth Regul 58(3):251–260

    Article  CAS  Google Scholar 

  50. Fujita A, Goto-Yamamoto N, Aramaki I, Hashizume K (2006) Organ-specific transcription of putative flavonol synthase genes of grapevine and effects of plant hormones and shading on flavonol biosynthesis in grape berry skins. Biosci Biotechnol Biochem 70(3):632–638

    Article  CAS  PubMed  Google Scholar 

  51. Wang Z, Zhao FX, Zhao X, Ge H, Chai LJ, Chen SW, Perl A, Ma HQ (2012) Proteomic analysis of berry-sizing effect of GA3 on seedless Vitis vinifera L. Proteomics 12:86–94

    Article  PubMed  Google Scholar 

  52. Moore S, Vrebalov J, Payton P, Giovannoni J (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53:2023–2030

    Article  CAS  PubMed  Google Scholar 

  53. Robles P, Pelaz S (2005) Flower and fruit development in Arabidopsis thaliana. Int J Dev Biol 49:633–643

    Article  CAS  PubMed  Google Scholar 

  54. Xu BY, Su W, Liu JH, Wang JB, Jin ZQ (2007) Differentially expressed cDNAs at the early stage of banana ripening identified by suppression subtractive hybridization and cDNA microarray. Planta 226(2):529–539

    Article  CAS  PubMed  Google Scholar 

  55. Yao Y, Li M, Liu Z, Hao Y, Zhai H (2007) A novel gene screened by cDNA-AFLP approach contributes to lowering the acidity of fruit in apple. Plant Physiol 45:139–145

    CAS  Google Scholar 

  56. Miller SS, Driscoll BT, Gregerson RG (1998) Alfalfa malate dehydrogenase (MDH): molecular cloning and characterization of five different forms reveals a unique nodule enhance MDH. Plant J 15:173–184

    Article  CAS  PubMed  Google Scholar 

  57. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor MdMYB10. Plant J 49:414–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  59. Lee Y, Yu G, Seo YS, Han SE, Choi Y, Kim D, Mok I, Kim WT, Sung S (2007) Microarray analysis of apple gene expression engaged in early fruit development. Plant Cell Rep 26:917–926

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Fundamental Research Funds for the Central Universities (No. KYJ200909) and the Program of NCET (No. NCET08-0796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinggui Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2014_3311_MOESM1_ESM.doc

Additional File 1. Percentage distribution of up/down-regulated differentially expressed genes involved in biological process, molecular functions and cellular component annotation. (DOC 441 kb)

11033_2014_3311_MOESM2_ESM.cdt

Additional File 2. 2,493 differentially expressed genes with two fold increase or decrease detected by microarray between fruits of table and wine grape. This file can be recognized via Tree View 1.6 software. The clustering diagram shows that the up- or down regulated genes between table and wine grape were divided into two groups, with genes having similar expression profile were clustered into the sub-groups. (CDT 299 kb)

11033_2014_3311_MOESM3_ESM.pdf

Additional File 3. The metabolic pathways map corresponding to up/down-regulated differentially expressed genes encoding enzymes. The red lines shown in metabolic pathway figure represent the up-regulated differentially expressed genes, which were with high expression in table grape, the green ones represent the down-regulated genes, which were with high expression in wine grape. (PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Kayesh, E., Han, J. et al. Microarray analysis of differentially expressed genes engaged in fruit development between table and wine grape. Mol Biol Rep 41, 4397–4412 (2014). https://doi.org/10.1007/s11033-014-3311-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3311-6

Keywords

Navigation