Skip to main content
Log in

Galectin-3 contributes to cisplatin-induced myeloid derived suppressor cells (MDSCs) recruitment in Lewis lung cancer-bearing mice

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recently the recruitment/migration of myeloid derived suppressor cells (MDSCs) to tumor microenvironment after chemotherapy has attracted much attention. To determine the detailed mechanism for the responses of MDSCs to these chemotherapies, we investigated the changes of galectin-3 and MDSCs in response to cisplatin(0.4 mg/kg, 4 mg/kg) treatment both in vivo and ex vivo. In the process of cisplatin, we assessed levels of galectin-3 and MDSCs in the Lewis lung cancer (LLC) bearing mice using immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), immunofluorence and flow cytometry (FCM). The expression and changes of galectin-3 in the LLC cell line were detected by western blot, immunofluorence and ELISA. The ligand for galectin-3 on MDSCs and the chemotaxis of galectin-3 to MDSCs were confirmed using FCM and transwell. Parallel increased level of galectin-3 with the number of MDSCs in vivo was detected after cisplatin treatment. LLC cells expressed galectin-3 and cisplatin increased galectin-3 level in the culture medium. Furthermore, MDSCs were detected to express CD98, the ligand of galectin-3, and could be recruited by galectin-3. Our results suggested that the elevated expression of gelectin-3 in LLC tumor cells may contribute to the migration of MDSCs to the tumor microenvironment in response to cisplatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Teicher BA, Herman TS, Holden SA, Wang YY, Pfeffer MR, Crawford JW, Frei E 3rd (1990) Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247:1457–1461

    Article  CAS  PubMed  Google Scholar 

  2. Basak GW, Srivastava AS, Malhotra R, Carrier E (2009) Multiple myeloma bone marrow niche. Curr Pharm Biotechnol 10:345–346

    Article  PubMed  Google Scholar 

  3. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252. doi:10.1038/nrc2618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. doi:10.1038/nri2506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ (2009) Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin–cyclophosphamide chemotherapy. Cancer Immunol Immunother 58:49–59. doi:10.1007/s00262-008-0523-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gabitass RF, Annels NE, Stocken DD, Pandha HA, Middleton GW (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60:1419–1430. doi:10.1007/s00262-011-1028-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88. doi:10.1038/sj.cdd.4402237

    Article  CAS  PubMed  Google Scholar 

  8. Filipazzi P, Burdek M, Villa A, Rivoltini L, Huber V (2012) Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol 22:342–349. doi:10.1016/j.semcancer.2012.02.005

    Article  CAS  PubMed  Google Scholar 

  9. Umansky V, Sevko A (2012) Tumor microenvironment and myeloid-derived suppressor cells. Cancer Microenviron. doi:10.1007/s12307-012-0126-7

    PubMed Central  PubMed  Google Scholar 

  10. Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH (2010) GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1-bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat 123:39–49. doi:10.1007/s10549-009-0622-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290

    Article  CAS  PubMed  Google Scholar 

  12. Wu CT, Hsieh CC, Lin CC, Chen WC, Hong JH, Chen MF (2012) Significance of IL-6 in the transition of hormone-resistant prostate cancer and the induction of myeloid-derived suppressor cells. J Mol Med (Berl) 90:1343–1355. doi:10.1007/s00109-012-0916-x

    Article  CAS  Google Scholar 

  13. Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark A, Ma G, Cannan D, Ramacher M, Kato M, Overwijk WW, Chen SH, Umansky VY, Sikora AG (2012) Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J Immunol 188:5365–5376. doi:10.4049/jimmunol.1103553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P (2011) PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71:7463–7470. doi:10.1158/0008-5472.can-11-2449

    Article  CAS  PubMed  Google Scholar 

  15. Sevko A, Sade-Feldman M, Kanterman J, Michels T, Falk CS, Umansky L, Ramacher M, Kato M, Schadendorf D, Baniyash M, Umansky V (2013) Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents antitumor response in melanoma. J Invest Dermatol 133:1610–1619. doi:10.1038/jid.2012.444

    Article  CAS  PubMed  Google Scholar 

  16. Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16:4583–4594. doi:10.1158/1078-0432.CCR-10-0733

    Article  CAS  PubMed  Google Scholar 

  17. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157. doi:10.1158/1078-0432.CCR-08-1332

    Article  CAS  PubMed  Google Scholar 

  18. Ohannesian DW, Lotan D, Thomas P, Jessup JM, Fukuda M, Gabius HJ, Lotan R (1995) Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells. Cancer Res 55:2191–2199

    CAS  PubMed  Google Scholar 

  19. Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, Hirashima M, Liu FT (2000) Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165:2156–2164

    Article  CAS  PubMed  Google Scholar 

  20. Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636–645

    Article  CAS  PubMed  Google Scholar 

  21. Buttery R, Monaghan H, Salter DM, Sethi T (2004) Galectin-3: differential expression between small-cell and non-small-cell lung cancer. Histopathology 44:339–344. doi:10.1111/j.1365-2559.2004.01815.x

    Article  CAS  PubMed  Google Scholar 

  22. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, Gabrilovich D (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172:464–474

    Article  CAS  PubMed  Google Scholar 

  23. Dong S, Hughes RC (1997) Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen). Glycoconj J 14:267–274

    Article  CAS  PubMed  Google Scholar 

  24. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson KM, Leffler H, Nilsson UJ, Haslett C, Forbes SJ, Sethi T (2008) Regulation of alternative macrophage activation by galectin-3. J Immunol 180:2650–2658

    Article  CAS  PubMed  Google Scholar 

  25. Nakasone ES, Askautrud HA, Kees T, Park JH, Plaks V, Ewald AJ, Fein M, Rasch MG, Tan YX, Qiu J, Park J, Sinha P, Bissell MJ, Frengen E, Werb Z, Egeblad M (2012) Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell 21:488–503. doi:10.1016/j.ccr.2012.02.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Matsuda Y, Yamagiwa Y, Fukushima K, Ueno Y, Shimosegawa T (2008) Expression of galectin-3 involved in prognosis of patients with hepatocellular carcinoma. Hepatol Res 38:1098–1111. doi:10.1111/j.1872-034X.2008.00387.x

    Article  CAS  PubMed  Google Scholar 

  27. Baptiste TA, James A, Saria M, Ochieng J (2007) Mechano-transduction mediated secretion and uptake of galectin-3 in breast carcinoma cells: implications in the extracellular functions of the lectin. Exp Cell Res 313:652–664. doi:10.1016/j.yexcr.2006.11.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cay T (2012) Immunhistochemical expression of galectin-3 in cancer: a review of the literature. Turk Patoloji Derg 28:1–10. doi:10.5146/tjpath.2012.01090

    PubMed  Google Scholar 

  29. Iacovazzi PA, Notarnicola M, Caruso MG, Guerra V, Frisullo S, Altomare DF (2010) Serum levels of galectin-3 and its ligand 90 k/mac-2 bp in colorectal cancer patients. Immunopharmacol Immunotoxicol 32:160–164. doi:10.1080/08923970902936880

    Article  CAS  PubMed  Google Scholar 

  30. Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S (2000) Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 6:1389–1393

    CAS  PubMed  Google Scholar 

  31. Safaei R, Larson BJ, Cheng TC, Gibson MA, Otani S, Naerdemann W, Howell SB (2005) Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther 4:1595–1604. doi:10.1158/1535-7163.mct-05-0102

    Article  CAS  PubMed  Google Scholar 

  32. Haudek KC, Spronk KJ, Voss PG, Patterson RJ, Wang JL, Arnoys EJ (2010) Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim Biophys Acta 1800:181–189. doi:10.1016/j.bbagen.2009.07.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Honjo Y, Inohara H, Akahani S, Yoshii T, Takenaka Y, Yoshida J, Hattori K, Tomiyama Y, Raz A, Kubo T (2000) Expression of cytoplasmic galectin-3 as a prognostic marker in tongue carcinoma. Clin Cancer Res 6:4635–4640

    CAS  PubMed  Google Scholar 

  34. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, Pisarev V, Sherman S, Sporn MB, Gabrilovich D (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029. doi:10.1172/jci45862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513. doi:10.1158/0008-5472.CAN-06-4174

    Article  CAS  PubMed  Google Scholar 

  36. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH (2008) Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111:219–228. doi:10.1182/blood-2007-04-086835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Cao Z, Said N, Amin S, Wu HK, Bruce A, Garate M, Hsu DK, Kuwabara I, Liu FT, Panjwani N (2002) Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J Biol Chem 277:42299–42305. doi:10.1074/jbc.M200981200

    Article  CAS  PubMed  Google Scholar 

  38. Friedrichs J, Manninen A, Muller DJ, Helenius J (2008) Galectin-3 regulates integrin alpha2beta1-mediated adhesion to collagen-I and -IV. J Biol Chem 283:32264–32272. doi:10.1074/jbc.M803634200

    Article  CAS  PubMed  Google Scholar 

  39. Kuwabara I, Liu FT (1996) Galectin-3 promotes adhesion of human neutrophils to laminin. J Immunol 156:3939–3944

    CAS  PubMed  Google Scholar 

  40. Rao SP, Wang Z, Zuberi RI, Sikora L, Bahaie NS, Zuraw BL, Liu FT, Sriramarao P (2007) Galectin-3 functions as an adhesion molecule to support eosinophil rolling and adhesion under conditions of flow. J Immunol 179:7800–7807

    Article  CAS  PubMed  Google Scholar 

  41. Jeon SB, Yoon HJ, Chang CY, Koh HS, Jeon SH, Park EJ (2010) Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway. J Immunol 185:7037–7046. doi:10.4049/jimmunol.1000154

    Article  CAS  PubMed  Google Scholar 

  42. Correia AL, Bissell MJ (2012) The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist Updat 15:39–49. doi:10.1016/j.drup.2012.01.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS, Hwang ES, Jirstrom K, West BL, Coussens LM (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67. doi:10.1158/2159-8274.cd-10-0028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express special thanks to Dr. Tengfang Zhu for his assistance with sectioning and staining during the immunochemistry experiment. This work was supported by National Natural Science Foundation of China (No. 81000910, 81101551).

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Chu, Z., Lin, H. et al. Galectin-3 contributes to cisplatin-induced myeloid derived suppressor cells (MDSCs) recruitment in Lewis lung cancer-bearing mice. Mol Biol Rep 41, 4069–4076 (2014). https://doi.org/10.1007/s11033-014-3276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3276-5

Keywords

Navigation