Skip to main content

Advertisement

Log in

RARB and STMN2 polymorphisms are not associated with sporadic Creutzfeldt–Jakob disease (CJD) in the Korean population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Polymorphisms in the prion protein gene (PRNP) can affect the susceptibility of humans to prion diseases. Recently, aside from PRNP, single nucleotide polymorphisms (SNPs) of two candidate genes for susceptibility to human prion diseases have been identified by human genome-wide association studies (GWAS) in the British population. One SNP of retinoic acid receptor beta (RARB), which is correlated with prion disease incubation time in mice, was associated with human prion diseases such as variant and iatrogenic CJD in the British population. The other SNP of the gene that encodes SCG10 (STMN2), which is related to clinical onset of sporadic CJD, was also associated with variant CJD and kuru. In order to investigate whether two polymorphisms located in upstream of RARB and STMN2 are associated with sporadic CJD in the Korean population, we compared genotype and allele frequencies of these polymorphisms in 217 sporadic CJD patients and 216 healthy Koreans. The genotype distribution and allele frequencies in upstream of the RARB and STMN2 polymorphisms were not significantly different between healthy controls and Korean sporadic CJD patients. This finding indicates that the two SNPs are not correlated with genetic susceptibility to sporadic CJD in the Korean population. This is the first genetic association study of RARB and STMN2 with sporadic CJD in an Asian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Zerr I, Poser S (2002) Clinical diagnosis and differential diagnosis of CJD and vCJD with special emphasis on laboratory tests. APMIS 110:88–98

    Article  PubMed  Google Scholar 

  2. Aguzzi A, Calella AM (2009) Prions: protein aggregation and infectious diseases. Physiol Rev 89:1105–1152

    Article  PubMed  CAS  Google Scholar 

  3. Gambetti P, Kong Q, Zou W, Parchi P, Chen SG (2003) Sporadic and familial CJD: classification and characterisation. Br Med Bull 66:213–239

    Article  PubMed  CAS  Google Scholar 

  4. Palmer MS, Dryden AJ, Hughes JT, Collinge J (1991) Homozygous prion protein genotype predisposes to sporadic Creutzfeldt–Jakob disease. Nature 352:340–342

    Article  PubMed  CAS  Google Scholar 

  5. Jeong BH, Lee KH, Kim NH, Jin JK, Kim JI, Carp RI, Kim YS (2005) Association of sporadic Creutzfeldt–Jakob disease with homozygous genotypes at PRNP codons 129 and 219 in the Korean population. Neurogenetics 6:229–232

    Article  PubMed  CAS  Google Scholar 

  6. Alperovitch A, Zerr I, Pocchiari M, Mitrova E, de Pedro Cuesta J, Hegyi I, Collins S, Kretzschmar H, van Duijn C, Will RG (1999) Codon 129 prion protein genotype and sporadic Creutzfeldt–Jakob disease. Lancet 353:1673–1674

    Article  PubMed  CAS  Google Scholar 

  7. Jeong BH, Nam JH, Lee YJ, Lee KH, Jang MK, Carp RI, Lee HD, Ju YR, Ahn Jo S, Park KY, Kim YS (2004) Polymorphisms of the prion protein gene (PRNP) in a Korean population. J Hum Genet 49:319–324

    Article  PubMed  CAS  Google Scholar 

  8. Carp RI, Meeker H, Sersen E, Kozlowski P (1998) Analysis of the incubation periods, induction of obesity and histopathological changes in senescence-prone and senescence-resistant mice infected with various scrapie strains. J Gen Virol 79:2863–2869

    PubMed  CAS  Google Scholar 

  9. Lloyd SE, Onwuazor ON, Beck JA, Mallinson G, Farrall M, Targonski P, Collinge J, Fisher EM (2001) Identification of multiple quantitative trait loci linked to prion disease incubation period in mice. Proc Natl Acad Sci USA 98:6279–6283

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Manolakou K, Beaton J, McConnell I, Farquar C, Manson J, Hastie ND, Bruce M, Jackson IJ (2001) Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. Proc Natl Acad Sci USA 98:7402–7407

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Lloyd SE, Uphill JB, Targonski PV, Fisher EM, Collinge J (2002) Identification of genetic loci affecting mouse-adapted bovine spongiform encephalopathy incubation time in mice. Neurogenetics 4:77–81

    Article  PubMed  CAS  Google Scholar 

  12. Moreno CR, Lantier F, Lantier I, Sarradin P, Elsen JM (2003) Detection of new quantitative trait Loci for susceptibility to transmissible spongiform encephalopathies in mice. Genetics 165:2085–2091

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Stephenson DA, Chiotti K, Ebeling C, Groth D, DeArmond SJ, Prusiner SB, Carlson GA (2000) Quantitative trait loci affecting prion incubation time in mice. Genomics 69:47–53

    Article  PubMed  CAS  Google Scholar 

  14. Mead S, Poulter M, Uphill J, Beck J, Whitfield J, Webb TE, Campbell T, Adamson G, Deriziotis P, Tabrizi SJ, Hummerich H, Verzilli C, Alpers MP, Whittaker JC, Collinge J (2009) Genetic risk factors for variant Creutzfeldt–Jakob disease: a genome-wide association study. Lancet Neurol 8:57–66

    Article  PubMed Central  PubMed  Google Scholar 

  15. Grizenkova J, Akhtar S, Collinge J, Lloyd SE (2010) The retinoic acid receptor beta (Rarb) region of Mmu14 is associated with prion disease incubation time in mouse. PLoS ONE 5:e15019

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16

    Article  PubMed  CAS  Google Scholar 

  17. Grenningloh G, Soehrman S, Bondallaz P, Ruchti E, Cadas H (2004) Role of the microtubule destabilizing proteins SCG10 and stathmin in neuronal growth. J Neurobiol 58:60–69

    Article  PubMed  CAS  Google Scholar 

  18. Zerr I, Pocchiari M, Collins S, Brandel JP, de Pedro Cuesta J, Knight RS, Bernheimer H, Cardone F, Delasnerie-Laupreˆtre N, Cuadrado Corrales N, Ladogana A, Bodemer M, Fletcher A, Awan T, Ruiz Bremo′n A, Budka H, Laplanche JL, Will RG, Poser S (2000) Analysis of EEG and CSF 14-3-3 proteins as aids to the diagnosis of Creutzfeldt–Jakob disease. Neurology 55:811–815

    Article  PubMed  CAS  Google Scholar 

  19. Jeong BH, Ju WK, Huh K, Lee EA, Choi IS, Im JH, Choi EK, Kim YS (1998) Molecular analysis of prion protein gene (PRNP) in Korean patients with Creutzfeldt–Jakob disease. J Korean Med Sci 13:234–240

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Jeong BH, Jeon YC, Lee YJ, Cho HJ, Park SJ, Chung DI, Kim J, Kim SH, Kim HT, Choi EK, Choi KC, Carp RI, Kim YS (2010) Creutzfeldt–Jakob disease with the V203I mutation and M129 V polymorphism of the prion protein gene (PRNP) and a 17 kDa prion protein fragment. Neuropathol Appl Neurobiol 36:558–563

    Article  PubMed  CAS  Google Scholar 

  21. Bate C, Langeveld J, Williams A (2004) Manipulation of PrP(res) production in scrapie-infected neuroblastoma cells. J Neurosci Methods 138:217–223

    Article  PubMed  CAS  Google Scholar 

  22. Rybner C, Hillion J, Sahraoui T, Lanotte M, Botti J (2002) All-trans retinoic acid down-regulates prion protein expression independently of granulocyte maturation. Leukemia 16:940–948

    Article  PubMed  CAS  Google Scholar 

  23. Cabral ALB, Lee KS, Martins VR (2002) Regulation of the cellular prion protein gene expression depends on chromatin conformation. J Biol Chem 277:5675–5682

    Article  PubMed  CAS  Google Scholar 

  24. Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J (2011) Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 470:540–542

    Article  PubMed  CAS  Google Scholar 

  25. Tran PX, Au KS, Morrison AC, Fletcher JM, Ostermaier KK, Tyerman GH, Northrup H (2011) Association of retinoic acid receptor genes with meningomyelocele. Birth Defects Res A Clin Mol Teratol 91:39–43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Wilk JB, Shrine NR, Loehr LR, Zhao JH, Manichaikul A, Lopez LM, Smith AV, Heckbert SR, Smolonska J, Tang W, Loth DW, Curjuric I, Hui J, Cho MH, Latourelle JC, Henry AP, Aldrich M, Bakke P, Beaty TH, Bentley AR, Borecki IB, Brusselle GG, Burkart KM, Chen TH, Couper D, Crapo JD, Davies G, Dupuis J, Franceschini N, Gulsvik A, Hancock DB, Harris TB, Hofman A, Imboden M, James AL, Khaw KT, Lahousse L, Launer LJ, Litonjua A, Liu Y, Lohman KK, Lomas DA, Lumley T, Marciante KD, McArdle WL, Meibohm B, Morrison AC, Musk AW, Myers RH, North KE, Postma DS, Psaty BM, Rich SS, Rivadeneira F, Rochat T, Rotter JI, Artigas MS, Starr JM, Uitterlinden AG, Wareham NJ, Wijmenga C, Zanen P, Province MA, Silverman EK, Deary IJ, Palmer LJ, Cassano PA, Gudnason V, Barr RG, Loos RJ, Strachan DP, London SJ, Boezen HM, Probst-Hensch N, Gharib SA, Hall IP, O’Connor GT, Tobin MD, Stricker BH (2012) Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med 186:622–632

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Ahmad FJ, Pienkowski TP, Baas PW (1993) Regional differences in microtubule dynamics in the axon. J Neurosci 13:856–866

    PubMed  CAS  Google Scholar 

  28. Okazaki T, Wang H, Masliah E, Cao M, Johnson SA, Sundsmo M, Saitoh T, Mori N (1995) SCG10, a neuron-specific growth-associated protein in Alzheimer’s disease. Neurobiol Aging 16:883–894

    Article  PubMed  CAS  Google Scholar 

  29. Bahn S, Mimmack M, Ryan M, Caldwell MA, Jauniaux E, Starkey M, Svendsen CN, Emson P (2002) Neuronal target genes of the neuron-restrictive silencer factor in neurospheres derived from fetuses with Down’s syndrome: a gene expression study. Lancet 359:310–315

    Article  PubMed  CAS  Google Scholar 

  30. Jeong BH, Lee KH, Lee YJ, Kim YH, Cho YS, Carp RI, Kim YS (2008) PRNP 1368 polymorphism is not associated with sporadic Creutzfeldt–Jakob disease in the Korean population. Eur J Neurol 15:846–850

    Article  PubMed  Google Scholar 

  31. Croes EA, Alizadeh BZ, Bertoli-Avella AM, Rademaker T, Vergeer-Drop J, Dermaut B, Houwing-Duistermaat JJ, Wientjens DP, Hofman A, Van Broeckhoven C, van Duijn CM (2004) Polymorphisms in the prion protein gene and in the doppel gene increase susceptibility for Creutzfeldt–Jakob disease. Eur J Hum Genet 12:389–394

    Article  PubMed  CAS  Google Scholar 

  32. Jeong BH, Kim NH, Choi EK, Lee C, Song YH, Kim JI, Carp RI, Kim YS (2005) Polymorphism at 3′ UTR +28 of the prion-like protein gene is associated with sporadic Creutzfeldt–Jakob disease. Eur J Hum Genet 13:1094–1097

    Article  PubMed  CAS  Google Scholar 

  33. Jeong BH, Kim NH, Kim JI, Carp RI, Kim YS (2005) Polymorphisms at codons 56 and 174 of the prion-like protein gene (PRND) are not associated with sporadic Creutzfeldt–Jakob disease. J Hum Genet 50:311–314

    Article  PubMed  CAS  Google Scholar 

  34. Beck JA, Campbell TA, Adamson G, Poulter M, Uphill JB, Molou E, Collinge J, Mead S (2008) Association of a null allele of SPRN with variant Creutzfeldt–Jakob disease. J Med Genet 45:813–817

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Jeong BH, Lee KH, Lee YJ, Yun J, Park YJ, Bae Y, Kim YH, Cho YS, Choi EK, Carp RI, Kim YS (2009) Genetic association of a cathepsin D polymorphism and sporadic Creutzfeldt–Jakob disease. Dement Geriatr Cogn Disord 28:302–306

    Article  PubMed  CAS  Google Scholar 

  36. Kovacs GG, Sanchez-Juan P, Ströbel T, Schuur M, Poleggi A, Nocentini S, Giannattasio C, Belay G, Bishop M, Capellari S, Parchi P, Gelpi E, Gal A, Bakos A, Molnar MJ, Heinemann U, Zerr I, Knight RS, Mitrova E, van Duijn C, Budka H (2010) Cathepsin D (C224T) polymorphism in sporadic and genetic Creutzfeldt–Jakob disease. Alzheimer Dis Assoc Disord 24:104–107

    Article  PubMed  CAS  Google Scholar 

  37. Jeong BH, Lee KH, Lee YJ, Yun J, Park YJ, Cho HJ, Kim YH, Cho YS, Choi EK, Carp RI, Kim YS (2011) Absence of association between two HECTD2 polymorphisms and sporadic Creutzfeldt–Jakob disease. Dement Geriatr Cogn Disord 31:146–151

    Article  PubMed  Google Scholar 

  38. Lloyd SE, Maytham EG, Pota H, Grizenkova J, Molou E, Uphill J, Hummerich H, Whitfield J, Alpers MP, Mead S, Collinge J (2009) HECTD2 is associated with susceptibility to mouse and human prion disease. PLoS Genet 5:e1000383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Sánchez-Juan P, Bishop MT, Green A, Giannattasio C, Arias-Vasquez A, Poleggi A, Knight RS, van Duijn CM (2007) No evidence for association between tau gene haplotypic variants and susceptibility to Creutzfeldt–Jakob disease. BMC Med Genet 8:77

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Amouyel P, Vidal O, Launay JM, Laplanche JL (1994) The apolipoprotein E alleles as major susceptibility factors for Creutzfeldt–Jakob disease. The French Research Group on Epidemiology of Human Spongiform Encephalopathies. Lancet 344:1315–1318

    Article  PubMed  CAS  Google Scholar 

  41. Calero O, Bullido MJ, Clarimón J, Frank-García A, Martínez-Martín P, Lleó A, Rey MJ, Sastre I, Rábano A, de Pedro-Cuesta J, Ferrer I, Calero M (2012) A common BACE1 polymorphism is a risk factor for sporadic Creutzfeldt–Jakob Disease. PLoS ONE 7:e43926

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Calero O, Bullido MJ, Clarimón J, Hortigüela R, Frank-García A, Martínez-Martín P, Lleó A, Rey MJ, Sastre I, Rábano A, de Pedro-Cuesta J, Ferrer I, Calero M (2012) Genetic variability of the gene cluster CALHM 1-3 in sporadic Creutzfeldt–Jakob disease. Prion 6:407–412

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Salvatore M, Seeber AC, Nacmias B, Petraroli R, Sorbi S, Pocchiari M (1997) Alpha1 antichymotrypsin signal peptide polymorphism in sporadic Creutzfeldt–Jakob disease. Neurosci Lett 227:140–142

    Article  PubMed  CAS  Google Scholar 

  44. Yun J, Jeong BH, Kim HJ, Park YJ, Lee YJ, Choi EK, Carp RI, Kim YS (2012) A polymorphism in the YWHAH gene encoding 14-3-3 eta that is not associated with sporadic Creutzfeldt–Jakob disease (CJD). Mol Biol Rep 39:3619–3625

    Article  PubMed  CAS  Google Scholar 

  45. Jeong BH, Jin HT, Choi EK, Carp RI, Kim YS (2012) Lack of association between 14-3-3 beta gene (YWHAB) polymorphisms and sporadic Creutzfeldt–Jakob disease (CJD). Mol Biol Rep 39:10647–10653

    Article  PubMed  CAS  Google Scholar 

  46. Yun J, Jin HT, Lee YJ, Choi EK, Carp RI, Jeong BH, Kim YS (2011) The first report of RPSA polymorphisms, also called 37/67 kDa LRP/LR gene, in sporadic Creutzfeldt–Jakob disease (CJD). BMC Med Genet 12:108

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Sanchez-Juan P, Bishop MT, Aulchenko YS, Brandel JP, Rivadeneira F, Struchalin M, Lambert JC, Amouyel P, Combarros O, Sainz J, Carracedo A, Uitterlinden AG, Hofman A, Zerr I, Kretzschmar HA, Laplanche JL, Knight RS, Will RG, van Duijn CM (2012) Genome-wide study links MTMR7 gene to variant Creutzfeldt–Jakob risk. Neurobiol Aging 33:1487.e21–1487.e28

    Article  CAS  Google Scholar 

  48. Mead S, Uphill J, Beck J, Poulter M, Campbell T, Lowe J, Adamson G, Hummerich H, Klopp N, Rückert IM, Wichmann HE, Azazi D, Plagnol V, Pako WH, Whitfield J, Alpers MP, Whittaker J, Balding DJ, Zerr I, Kretzschmar H, Collinge J (2012) Genome-wide association study in multiple human prion diseases suggests genetic risk factors additional to PRNP. Hum Mol Genet 21:1897–1906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant of the Korea Healthcare technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A085082) and Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A2003686).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, BH., Kim, HJ., Lee, KH. et al. RARB and STMN2 polymorphisms are not associated with sporadic Creutzfeldt–Jakob disease (CJD) in the Korean population. Mol Biol Rep 41, 2389–2395 (2014). https://doi.org/10.1007/s11033-014-3093-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3093-x

Keywords

Navigation