Skip to main content
Log in

In vitro studies on the interaction between human serum albumin and fosfomycin disodium salt, an antibiotic drug by multi-spectroscopic and molecular docking methods

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The interaction between the human serum albumin (HSA) and drug, fosfomycin disodium salt (FOS) has been studied by different spectroscopic techniques. The experimental results showed a static quenching mechanism in the interaction of FOS with HSA. The number of binding sites, n and observed binding constant K a were measured by fluorescence quenching method. The thermodynamic parameters Δ, Δ and Δ were calculated according to van’t Hoff equation. The calculated distance r between FOS and the protein is evaluated according to the theory of Förster energy transfer. A change in the secondary structure of the protein was evident from the circular dichroism measurements, synchronous fluorescence and three-dimensional fluorescence spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nandaa RK, Sarkar N, Banerjee R (2007) Probing the interaction of ellagic acid with human serum albumin: a fluorescence spectroscopic study. J Photochem Photobiol A 192:152–158

    Article  CAS  Google Scholar 

  2. Wu X, Liu J, Wang Q, Xue W, Yao X, Zhang Y, Jin J (2011) Spectroscopic and molecular modeling evidence of clozapine binding to human serum albumin at subdomain IIA. Spectrochim Acta A 79:1202–1209

    Article  CAS  Google Scholar 

  3. Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203

    Article  PubMed  CAS  Google Scholar 

  4. Bian Q, Liu J, Tian J, Hu Z (2004) Binding of genistein to human serum albumin demonstrated using tryptophan fluorescence quenching. Int J Biol Macromol 34:275–279

    Article  CAS  Google Scholar 

  5. Olson RE (1998) Evolution of ideas about the nutritional value of dietary fat: introduction. J Nutr 128:421S–422S

    PubMed  CAS  Google Scholar 

  6. Hendlin D, Stapley EO, Jackson M (1969) Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 166:122–123

    Article  PubMed  CAS  Google Scholar 

  7. Munos JW, Moon SJ, Mansoorabadi SO, Chang W, Hong L, Yan F, Liu A, Liu HW (2008) Purification and characterization of the epoxidase catalyzing the formation of fosfomycin from Pseudomonas syringae. Biochemistry 47:8726–8735

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Bergogne-Berezin E (2005) Fosfomycin and derivatives. In: Bryskier A (ed) Antimicrobial agents: antibacterials and antifungals. ASM Press, Washington, DC, pp 972–982

    Google Scholar 

  9. Tripos International (2012) Sybyl-X 2.0. Tripos International, St. Louis

    Google Scholar 

  10. Jain AN (1996) Scoring noncovalent protein–ligand interactions: a continuous differentiable function tuned to compute binding affinities. J Comput Aided Mol Des 10:427–440

    Article  PubMed  CAS  Google Scholar 

  11. Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511

    Article  PubMed  CAS  Google Scholar 

  12. Ai Y, Wang ST, Sun PH, Song FJ (2010) Molecular modeling studies of 4,5-dihydro-1Hpyrazolo[4,3-h]quinazoline derivatives as potent CDK2/cyclin A inhibitors using 3D-QSAR and docking. Int J Mol Sci 11:3705–3724

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Lan P, Chen WN, Chen WM (2011) Molecular modeling studies on imidazo[4,5-b]pyridine derivatives as Aurora A kinase inhibitors using 3D-QSAR and docking approaches. Eur J Med Chem 46:77–94

    Article  PubMed  CAS  Google Scholar 

  14. Lan P, Chen WN, Xiao GK, Sun PH, Chen WM (2010) 3D-QSAR and docking studies on pyrazolo[4,3-h]quinazoline-3-carboxamides as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorg Med Chem Lett 20:6764–6772

    Article  PubMed  CAS  Google Scholar 

  15. Hu YJ, Liu Y, Zhao RM, Qu SS (2005) Interaction of colchicine with human serum albumin investigated by spectroscopic methods. Int J Biol Macromol 37:122–126

    Article  PubMed  CAS  Google Scholar 

  16. Sherwin LS (1971) Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  Google Scholar 

  17. Ware WR (1962) Oxygen quenching of fluorescence in solution an experimental study of the diffusion process. J Phys Chem 66:455–458

    Article  CAS  Google Scholar 

  18. Xiao J, Shi J, Cao H, Wu S, Ren F, Xu M (2007) Analysis of binding interaction between puerarin and bovine serum albumin by multi-spectroscopic method. J Pharm Biomed Anal 45:609–615

    Article  PubMed  CAS  Google Scholar 

  19. Shaik SMT, Seetharamappa J, Kandagal PB, Manjunatha DH, Ashoka S (2007) Spectroscopic investigations on the mechanism of interaction of bioactive dye with bovine serum albumin. Dyes Pigments 74:665–671

    Article  CAS  Google Scholar 

  20. Jin J, Zhang X (2008) Spectrophotometric studies on the interaction between pazufloxacin and human serum albumin or lysozyme. J Lumin 128:81–86

    Article  CAS  Google Scholar 

  21. Li D, Zhu J, Jin J, Yao X (2007) Studies on the binding of nevadensin to human serum albumin by molecular spectroscopy and modeling. J Mol Struct 846:34–41

    Article  CAS  Google Scholar 

  22. Förster T (1959) 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss Faraday Soc 27:7–17

    Article  Google Scholar 

  23. Valeur B, Brochon JC (2001) New trends in fluorescence spectroscopy. Springer, Berlin

    Book  Google Scholar 

  24. Sklar LA, Hudson BS, Simoni RD (1977) Conjugated polyene fatty acids as fluorescent probes: binding to bovine serum albumin. Biochemistry 16:5100–5108

    Article  PubMed  CAS  Google Scholar 

  25. Cui FL, Fan J, Ma DL, Liu MC, Chen XG, Hu ZD (2003) A study of the interaction between a new reagent and serum albumin by fluorescence spectroscopy. Anal Lett 36:2151–2166

    Article  CAS  Google Scholar 

  26. Lu Y, Cui F, Fan J, Yang Y, Yao X, Li J (2009) Interaction of human serum albumin with N-(4-ethoxyphenyl)-N 0-(4-antipyrinyl) thiourea using spectroscopies and molecular modelling method. J Lumin 129:734–740

    Article  CAS  Google Scholar 

  27. Ying L, Wenying H, Jiaqin L, Fenling S, Zhide H, Xingguo C (2005) Binding of the bioactive component jatrorrhizine to human serum albumin. Biochim Biophys Acta 1722:15–21

    Article  CAS  Google Scholar 

  28. Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    PubMed  CAS  Google Scholar 

  29. Zhang G, Zhao N, Wang L (2011) Fluorescence spectrometric studies on the binding of puerarin to human serum albumin using warfarin, ibuprofen and digitoxin as site markers with the aid of chemometrics. J Lumin 131:2716–2724

    Article  CAS  Google Scholar 

  30. Bi SY, Song DQ, Tian Y, Zhou X, Liu ZY, Zhang HQ (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochim Acta A 61:629–636

    Article  CAS  Google Scholar 

  31. Cheng H, Liu H, Zhang Y, Zou G (2009) Interaction of the docetaxel with human serum albumin using optical spectroscopy methods. J Lumin 129:1196–1203

    Article  CAS  Google Scholar 

  32. He W, Li Y, Liu J, Hu Z, Chen X (2005) Specific interaction of chalcone-protein: cardamonin binding site II on the human serum albumin molecule. Biopolymers 79:48–57

    Article  PubMed  CAS  Google Scholar 

  33. Lu ZX, Cui T, Shi QL (1987) Applications of circular dichroism (CD) and optical rotatory dispersion (ORD) in molecular biology. Science Press, Beijing, pp 79–82

    Google Scholar 

  34. Shahabadi N, Maghsudi M, Ahmadipour Z (2012) Study on the interaction of silver(I) complex with bovine serum albumin by spectroscopic techniques. Spectrochim Acta A 92:184–188

    Article  CAS  Google Scholar 

  35. Poulli KI, Chantzos NV, Mousdis G, Georgiou C (2009) Synchronous fluorescence spectroscopy: tool for monitoring thermally stressed edible oils. J Agric Food Chem 57:8194–8201

    Article  PubMed  CAS  Google Scholar 

  36. Hemmateenejada B, Shamsipurb M, Samaria F, Khayamianc T, Ebrahimic M, Rezaeid Z (2012) Combined fluorescence spectroscopy and molecular modeling studies on the interaction between harmalol and human serum albumin. Pharm Biomed Anal 67–68:201–208

    Article  CAS  Google Scholar 

  37. Cheng Z (2012) Studies on the interaction between scopoletin and two serum albumins by spectroscopic methods. J Lumin 132:2719–2729

    Article  CAS  Google Scholar 

  38. Jiang H, Chen RR, Wang HC, Pu HL (2012) Studies on the binding of vinpocetine to human serum albumin by molecular spectroscopy and modeling. Chin Chem Lett 23:599–602

    Article  CAS  Google Scholar 

  39. Li Y, Yang G, Mei Z (2012) Spectroscopic and dynamic light scattering studies of the interaction between pterodontic acid and bovine serum albumin. Acta Pharma Sin B 2:53–59

    Article  CAS  Google Scholar 

  40. Yuea Y, Liua J, Fana J, Yaob X (2011) Binding studies of phloridzin with human serum albumin and its effect on the conformation of protein. J Pharm Biomed Anal 56:336–342

    Article  CAS  Google Scholar 

  41. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York, pp 243–244

    Book  Google Scholar 

Download references

Acknowledgments

One of the author Manjunath D. Meti thanks DST New Delhi for providing Innovation in Science Pursuit for Inspired Research (INSPIRE) fellowship. The authors thank the Prof. M. V. Kulkarni, Department of Chemistry, K. U. Dharwad for valuable suggestions. The authors also thank the Chairman, Department of Molecular Biophysics, Indian Institute of Science, Bangalore for CD measurement facilities and Dr. V. H. Kulkarni, Principal, S.E.T’s College of Pharmacy, Dharwad for docking studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivamurti A. Chimatadar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 243 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meti, M.D., Byadagi, K.S., Nandibewoor, S.T. et al. In vitro studies on the interaction between human serum albumin and fosfomycin disodium salt, an antibiotic drug by multi-spectroscopic and molecular docking methods. Mol Biol Rep 41, 2377–2387 (2014). https://doi.org/10.1007/s11033-014-3092-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3092-y

Keywords

Navigation