Skip to main content

Advertisement

Log in

Supplementation transgenic cow’s milk containing recombinant human lactoferrin enhances systematic and intestinal immune responses in piglets

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lactoferrin (LF) plays an important role in the body’s immune system. However, the immunomodulatory effects of supplementation transgenic cow’s milk containing recombinant human LF (rhLF) on the systemic and intestinal immune systems in infants remain unclear. Our laboratory has used genetic engineer to produce transgenic cow secreted rhLF. To assess the immune responses we took piglets as an animal model for infants. Eighteen piglets at 7 days of age were fed ordinary milk, 1:1 mix of ordinary and rhLF milk, or rhLF milk (LFM) for 30 days. The incidence of diarrhea in piglets in natural condition was observed. The protein abundances of immunoglobulin (Ig)G, IgA, IgM, IgE, histamine, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-8, IL-10, IL-12 interferon, tumor necrosis factor in the plasma, spleen or intestine were measured by enzyme-linked immunosorbent assay. Intestinal structure was assessed by hematoxylin and eosin. The mRNA levels of immune and allergy-related genes were measured by quantitative reverse transcription-polymerase chain reaction. The results showed that LFM-fed significantly reduced incidence of diarrhea, enhanced humoral immunity, T helper (Th) 1, and Th2 cell responses, improved the structure of the intestinal mucosal and did not induce food allergy. LFM increased mRNA levels of toll-like receptor 2 and nuclear factor-κB p65 and decreased that of FCεRI β. In conclusion, rhLF-enriched formula could improve systematic and intestinal immune responses and did not elicit food allergies in neonatal piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Valenti P, Berlutti F, Conte MP, Longhi C, Seganti L (2004) Lactoferrin functions: current status and perspectives. J Clin Gastroenterol 38:S127–S129

    Article  PubMed  CAS  Google Scholar 

  2. Chierici R (2001) Antimicrobial actions of lactoferrin. Adv Nutr Res 10:247–269

    PubMed  CAS  Google Scholar 

  3. Wakabayashi H, Takakura N, Yamauchi K, Tamura Y (2006) Modulation of immunity-related gene expression in small intestines of mice by oral administration of lactoferrin. Clin Vaccine Immunol 13:239–245

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Yamauchi K, Wakabayashi H, Shin K, Takase M (2006) Bovine lactoferrin: benefits and mechanism of action against infections. Biochem Cell Biol 84:291–296

    Article  PubMed  CAS  Google Scholar 

  5. Latorre D, Puddu P, Valenti P, Gessani S (2010) Reciprocal interactions between lactoferrin and bacterial endotoxins and their role in the regulation of the immune response. Toxins (Basel) 2:54–68

    Article  CAS  Google Scholar 

  6. Kruzel ML, Harari Y, Mailman D, Actor JK, Zimecki M (2004) Differential effects of prophylactic, concurrent and therapeutic lactoferrin treatment on LPS-induced inflammatory responses in mice. Clin Exp Immunol 130:25–31

    Article  Google Scholar 

  7. Levay PF, Viljoen M (1995) Lactoferrin: a general review. Haematologica 80:252–267

    PubMed  CAS  Google Scholar 

  8. Long KZ, Rosado JL, Santos JI, Haas M, Al Mamun A, DuPont HL, Nanthakumar NN, Estrada-Garcia T (2010) Associations between mucosal innate and adaptive immune responses and resolution of diarrheal pathogen infections. Infect Immun 78:1221–1228

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Underwood MA (2013) Human milk for the premature infant. Pediatr Clin North Am 60:189–207

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bullen JJ (1972) Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Proc R Soc Med 65:1086

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Wold AE, Adlerberth I (2000) Breast feeding and the intestinal microflora of the infant-implications for protection against infectious diseases. Adv Exp Med Biol 478:77–93

    Article  PubMed  CAS  Google Scholar 

  12. Steijns JM, van Hooijdonk AC (2000) Occurrence, structure, biochemical properties and technological characteristics of lactoferrin. Br J Nutr 84:S11–S117

    Article  PubMed  CAS  Google Scholar 

  13. Suzuki S, Iwamoto M, Saito Y, Fuchimoto D, Sembon S, Suzuki M, Mikawa S, Hashimoto M, Aoki Y, Najima Y, Takagi S, Suzuki N, Suzuki E, Kubo M, Mimuro J, Kashiwakura Y, Madoiwa S, Sakata Y, Perry AC, Ishikawa F, Onishi A (2012) Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell 10:753–758

    Article  PubMed  CAS  Google Scholar 

  14. Hu W, Zhao J, Wang J, Yu T, Wang J, Li N (2012) Transgenic milk containing recombinant human lactoferrin modulates the intestinal flora in piglets. Biochem Cell Biol 90:485–496

    Article  PubMed  CAS  Google Scholar 

  15. Azevedo MS, Yuan L, Pouly S, Gonzales AM, Jeong KI, Nguyen TV, Saif LJ (2006) Cytokine responses in gnotobiotic pigs after infection with virulent or attenuated human rotavirus. J Virol 80:372–382

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  17. SAS Institute Inc. (2000) Statistical Analysis Software (CD-ROM), Version 8.1. SAS Institute Inc, Cary

    Google Scholar 

  18. Bowman CC, Selgrade MK (2008) Differences in allergenic potential of food extracts following oral exposure in mice reflect differences in digestibility: potential approaches to safety assessment. Toxicol Sci 102:100–109

    Article  PubMed  CAS  Google Scholar 

  19. Sun P, Li D, Li Z, Wang F (2008) Effects of glycinin on IgE-mediated increase of mast cell numbers and histamine release in the small intestine. J Nutr Biochem 19:627–633

    Article  PubMed  CAS  Google Scholar 

  20. Schwab D, Hahn EG, Raithel M (2003) Enhanced histamine metabolism: a comparative analysis of collagenous colitis and food allergy with respect to the role of diet and NSAID use. Inflamm Res 52:142–147

    Article  PubMed  CAS  Google Scholar 

  21. Prenner ML, Prgomet C, Sauerwein H, Pfaffl MW, Broz J, Schwarz FJ (2007) Effects of lactoferrin feeding on growth, feed intake and health of calves. Arch Anim Nutr 61:20–30

    Article  PubMed  CAS  Google Scholar 

  22. Tan XX, Actor KJ, Chen Y (2005) Peptide nucleic acid antisense oligomer as a therapeutic strategy against bacterial infection: proof of principle using mouse intraperitoneal infection. Antimicrob Agents Chemother 49:3203–3207

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Nichols BL, McKee KS, Henry JF, Putman M (1987) Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr Res 21:563–567

    Article  PubMed  CAS  Google Scholar 

  24. Hagiwara T, Shinoda I, Fukuwatari Y, Shimamura S (1995) Effects of lactoferrin and its peptides on proliferation of rat intestinal epithelial cell line, IEC-18, in the presence of epidermal growth factor. Biosci Biotechnol Biochem 59:1875–1881

    Article  PubMed  CAS  Google Scholar 

  25. Salzman NH (2011) Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol 14:99–105

    Article  PubMed Central  PubMed  Google Scholar 

  26. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    PubMed  CAS  Google Scholar 

  27. Sfeir RM, Dubarry M, Boyaka PN, Rautureau M, Tomé D (2004) The mode of oral bovine lactoferrin administration influences mucosal and systemic immune responses in mice. J Nutr 34:403–409

    Google Scholar 

  28. Prgomet C, Prenner ML, Schwarz FJ, Pfaffl MW (2007) Effect of lactoferrin on selected immune system parameters and the gastrointestinal morphology in growing calves. J Anim Physiol Anim Nutr (Berl) 91:109–119

    Article  CAS  Google Scholar 

  29. Shinoda I, Takase M, Fukuwatari Y, Shimamura S, Köller M, König W (1996) Effects of lactoferrin and lactoferricin on the release of interleukin 8 from human polymorphonuclear leukocytes. Biosci Biotechnol Biochem 60:521–523

    Article  PubMed  CAS  Google Scholar 

  30. Debbabi H, Dubarry M, Rautureau M, Tomé D (1998) Bovine lactoferrin induces both mucosal and systemic immune response in mice. J Dairy Res 65:283–293

    Article  PubMed  CAS  Google Scholar 

  31. Brandtzaeg P, Osnes L, Ovstebø R, Joø GB, Westvik AB, Kierulf P (1996) Net inflammatory capacity of human septic shock plasma evaluated by a monocyte-based target cell assay: identification of interleukin-10 as a major functional deactivator of human monocytes. J Exp Med 184:51–60

    Article  PubMed  CAS  Google Scholar 

  32. Berlutti F, Schippa S, Morea C, Sarli S, Perfetto B, Donnarumma G, Valenti P (2006) Lactoferrin downregulates pro-inflammatory cytokines up expressed in intestinal epithelial cells infected with invasive or noninvasive Escherichia coli strains. Biochem Cell Biol 84:351–357

    Article  PubMed  CAS  Google Scholar 

  33. Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7:349–359

    Article  PubMed  CAS  Google Scholar 

  34. Pluske JR, Thompson MJ, Atwood CS, Bird PH, Williams IH, Hartmann PE (1996) Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows’ whole milk after weaning. Br J Nutr 76:409–422

    Article  PubMed  CAS  Google Scholar 

  35. Herfel TM, Jacobi SK, Lin X, Fellner V, Walker DC, Jouni ZE, Odle J (2011) Polydextrose enrichment of infant formula demonstrates prebiotic characteristics by altering intestinal microbiota, organic acid concentrations, and cytokine expression in suckling piglets. J Nutr 141:2139–2145

    Article  PubMed  CAS  Google Scholar 

  36. Oh SM, Hahm DH, Kim IH, Choi SY (2011) Human neutrophil lactoferrin trans-activates the matrix metalloproteinase 1 gene through stress-activated MAPK signaling modules. J Biol Chem 276:42575–42579

    Article  Google Scholar 

  37. Håversen L, Ohlsson BG, Hahn-Zoric M, Hanson LA, Mattsby-Baltzer I (2002) Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-kappa B. Cell Immunol 220:83–95

    Article  PubMed  CAS  Google Scholar 

  38. He J, Furmanski P (1995) Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373:721–724

    Article  PubMed  CAS  Google Scholar 

  39. Ando K, Hasegawa K, Shindo K, Furusawa T, Fujino T, Kikugawa K, Nakano H, Takeuchi O, Akira S, Akiyama T, Gohda J, Inoue J, Hayakawa M (2000) Human lactoferrin activates NF-kappa B through the Toll-like receptor 4 pathway while it interferes with the lipopolysaccharide-stimulated TLR4 signaling. FEBS J 277:2051–2066

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professors Defa Li and Xiangsu Piao and the Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, for their help with the pig feeding and necropsy. This work was supported by the National “863″ High-Tech Research and Development Program (2011AA100601), the National Transgenic Breeding Program (2011ZX08011-004), and China Agriculture Research System (CARS-37) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Hu, W., Zhao, J. et al. Supplementation transgenic cow’s milk containing recombinant human lactoferrin enhances systematic and intestinal immune responses in piglets. Mol Biol Rep 41, 2119–2128 (2014). https://doi.org/10.1007/s11033-014-3061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3061-5

Keywords

Navigation