Skip to main content
Log in

Comparison of different protocols for neural differentiation of human induced pluripotent stem cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Although embryonic stem cells (ESCs) have enormous potentials due to their pluripotency, their therapeutic use is limited by ethical, biological and safety issues. Compared to ESCs, induced pluripotent stem cells (iPSCs) can be obtained from mouse or human fibroblasts by reprogramming. Numerous studies have established many protocols for differentiation of human iPSCs (hiPSCs) into neural lineages. However, the low differentiation efficiency of such protocols motivates researchers to design new protocols for high yield differentiation. Herein, we compared neural differentiation potential of three induction media for conversion of hiPSCs into neural lineages. In this study, hiPSCs-derived embryoid bodies were plated on laminin coated dishes and were treated with three induction media including (1) bFGF, EGF (2) RA and (3) forskolin, IBMX. Immunofluorescence staining and quantitative real-time PCR (qPCR) analysis were used to detect the expression of neural genes and proteins. qPCR analysis showed that the expression of neural genes in differentiated hiPSCs in forskolin, IBMX supplemented media was significantly higher than undifferentiated cells and those in induction media containing bFGF, EGF or RA. In conclusion, our results indicated a successful establishment protocol with high efficiency for differentiation of hiPSCs into neural lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jang S, Cho HH, Cho YB, Park JS, Jeong HS (2010) Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 11:25. doi:10.1186/1471-2121-11-25

    Article  PubMed Central  PubMed  Google Scholar 

  2. Nelson TJ, Martinez-Fernandez A, Yamada S, Ikeda Y, Perez-Terzic C, Terzic A (2010) Induced pluripotent stem cells: advances to applications. Stem Cells Cloning 3:29–37. doi:10.2147/SCCAA.S4954

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:S0092-8674(06)00976-7

    Article  CAS  PubMed  Google Scholar 

  4. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K (2008) Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci USA 105(8):2883–2888. doi:10.1073/pnas.0711983105

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:S0092-8674(07)01471-7

    Article  CAS  PubMed  Google Scholar 

  6. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    Article  CAS  PubMed  Google Scholar 

  7. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920. doi:1151526

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089 nprot.2007.418

    Article  CAS  PubMed  Google Scholar 

  9. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G, Edel M, Boue S, Izpisua Belmonte JC (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284. doi:10.1038/nbt.1503

    Article  CAS  PubMed  Google Scholar 

  10. Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ (2009) Generation of induced pluripotent stem cells from human blood. Blood 113(22):5476–5479. doi:10.1182/blood-2009-02-204800

    Article  CAS  PubMed  Google Scholar 

  11. Sun N, Panetta NJ, Gupta DM, Wilson KD, Lee A, Jia F, Hu S, Cherry AM, Robbins RC, Longaker MT, Wu JC (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci USA 106(37):15720–15725. doi:10.1073/pnas.0908450106

    Article  CAS  PubMed  Google Scholar 

  12. Okada M, Oka M, Yoneda Y (2010) Effective culture conditions for the induction of pluripotent stem cells. Biochim Biophys Acta 1800(9):956–963. doi:10.1016/j.bbagen.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  13. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318(5858):1920–1923 1152092

    Article  CAS  PubMed  Google Scholar 

  14. Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC, Ma Y (2009) Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci USA 106(3):808–813. doi:10.1073/pnas.0812090106

    Article  CAS  PubMed  Google Scholar 

  15. Bilousova G, du Jun H, King KB, De Langhe S, Chick WS, Torchia EC, Chow KS, Klemm DJ, Roop DR, Majka SM (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29(2):206–216. doi:10.1002/stem.566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nelson TJ, Martinez-Fernandez A, Yamada S, Perez-Terzic C, Ikeda Y, Terzic A (2009) Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120(5):408–416. doi:10.1161/CIRCULATIONAHA.109.865154

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM, Ward DC, Ma Y (2009) Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int 33(11):1184–1193. doi:10.1016/j.cellbi.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  18. So KH, Han YJ, Park HY, Kim JG, Sung DJ, Bae YM, Yang BC, Park SB, Chang SK, Kim EY, Park SP (2011) Generation of functional cardiomyocytes from mouse induced pluripotent stem cells. Int J Cardiol 153(3):277–285. doi:10.1016/j.ijcard.2010.08.052

    Article  PubMed  Google Scholar 

  19. Mattis VB, Svendsen CN (2011) Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol 10(4):383–394. doi:10.1016/S1474-4422(11)70022-9

    Article  PubMed  Google Scholar 

  20. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci USA 105(15):5856–5861. doi:10.1073/pnas.0801677105

    Article  CAS  PubMed  Google Scholar 

  21. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136(5):964–977. doi:10.1016/j.cell.2009.02.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31(16):5970–5976. doi:10.1523/JNEUROSCI.4441-10.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zhang N, An MC, Montoro D, Ellerby LM (2010) Characterization of human huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr 2:RRN1193. doi:10.1371/currents.RRN1193

    Article  PubMed Central  PubMed  Google Scholar 

  24. Song B, Sun G, Herszfeld D, Sylvain A, Campanale NV, Hirst CE, Caine S, Parkington HC, Tonta MA, Coleman HA, Short M, Ricardo SD, Reubinoff B, Bernard CC (2012) Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis. Stem Cell Res 8(2):259–273. doi:10.1016/j.scr.2011.12.001

    Article  CAS  PubMed  Google Scholar 

  25. Ogawa Y, Tanaka M, Tanabe M, Suzuki T, Togawa T, Fukushige T, Kanekura T, Sakuraba H, Oishi K (2013) Impaired neural differentiation of induced pluripotent stem cells generated from a mouse model of Sandhoff disease. PLoS ONE 8(1):e55856. doi:10.1371/journal.pone.0055856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Urbach A, Bar-Nur O, Daley GQ, Benvenisty N (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6(5):407–411. doi:10.1016/j.stem.2010.04.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yang J, Cai J, Zhang Y, Wang X, Li W, Xu J, Li F, Guo X, Deng K, Zhong M, Chen Y, Lai L, Pei D, Esteban MA (2010) Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader–Willi syndrome. J Biol Chem 285(51):40303–40311. doi:10.1074/jbc.M110.183392

    Article  CAS  PubMed  Google Scholar 

  28. Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M, Nagoshi N, Kitamura K, Kumagai G, Nishino M, Tomisato S, Higashi H, Nagai T, Katoh H, Kohda K, Matsuzaki Y, Yuzaki M, Ikeda E, Toyama Y, Nakamura M, Yamanaka S, Okano H (2010) Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci USA 107(28):12704–12709. doi:10.1073/pnas.0910106107

    Article  CAS  PubMed  Google Scholar 

  29. Fujimoto Y, Abematsu M, Falk A, Tsujimura K, Sanosaka T, Juliandi B, Semi K, Namihira M, Komiya S, Smith A, Nakashima K (2012) Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells. Stem Cells 30(6):1163–1173. doi:10.1002/stem.1083

    Article  CAS  PubMed  Google Scholar 

  30. Ulloa-Montoya F, Verfaillie CM, Hu WS (2005) Culture systems for pluripotent stem cells. J Biosci Bioeng 100(1):12–27. doi:S1389-1723(05)70423-0

    Article  CAS  PubMed  Google Scholar 

  31. Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, Conway AE, Clark AT, Goldman SA, Plath K, Wiedau-Pazos M, Kornblum HI, Lowry WE (2009) Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27(4):806–811. doi:10.1002/stem.31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park JW, Zhan S, Kronenberg MS, Lichtler A, Liu HX, Chen FP, Yue L, Li XJ, Xu RH (2010) Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS ONE 5(7):e11853. doi:10.1371/journal.pone.0011853

    Article  PubMed Central  PubMed  Google Scholar 

  33. Cai J, Li W, Su H, Qin D, Yang J, Zhu F, Xu J, He W, Guo X, Labuda K, Peterbauer A, Wolbank S, Zhong M, Li Z, Wu W, So KF, Redl H, Zeng L, Esteban MA, Pei D (2010) Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285(15):11227–11234. doi:10.1074/jbc.M109.086389

    Article  CAS  PubMed  Google Scholar 

  34. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221. doi:10.1126/science.1158799

    Article  CAS  PubMed  Google Scholar 

  35. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280. doi:10.1038/nature07677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Wang A, Tang Z, Park IH, Zhu Y, Patel S, Daley GQ, Li S (2011) Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32(22):5023–5032. doi:10.1016/j.biomaterials.2011.03.070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kuo YC, Wang CT (2012) Neuronal differentiation of induced pluripotent stem cells in hybrid polyester scaffolds with heparinized surface. Colloids Surf B Biointerfaces 100:9–15. doi:10.1016/j.colsurfb.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  38. Ardeshirylajimi A, Hosseinkhani S, Parivar K, Yaghmaie P, Soleimani M (2013) Nanofiber-based polyethersulfone scaffold and efficient differentiation of human induced pluripotent stem cells into osteoblastic lineage. Mol Biol Rep 40(7):4287–4294. doi:10.1007/s11033-013-2515-5

    Article  CAS  PubMed  Google Scholar 

  39. Ardeshirylajimi A, Soleimani M, Hosseinkhani S, Parivar K, Yaghmaie P (2013) A comparative study of osteogenic differentiation of human induced pluripotent stem cells and adipose tissue derived mesenchymal stem cells. Cell J 16(4):1–22

    Google Scholar 

  40. Madonna R (2012) Human-induced pluripotent stem cells: in quest of clinical applications. Mol Biotechnol 52(2):193–203. doi:10.1007/s12033-012-9504-041

    Article  CAS  PubMed  Google Scholar 

  41. Yamanaka S (2009) Ekiden to iPS cells. Nat Med 15(10):1145–1148. doi:10.1038/nm1009-1145

    Article  CAS  PubMed  Google Scholar 

  42. Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24(20):2239–2263. doi:10.1101/gad.1963910

    Article  CAS  PubMed  Google Scholar 

  43. Pfannkuche K, Hannes T, Khalil M, Noghabi MS, Morshedi A, Hescheler J, Droge P (2010) Induced pluripotent stem cells: a new approach for physiological research. Cell Physiol Biochem 26(2):105–124. doi:10.1159/000320514

    Article  CAS  PubMed  Google Scholar 

  44. Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, Hefferan MP, Van Gorp S, Nazor KL, Boscolo FS, Carson CT, Laurent LC, Marsala M, Gage FH, Remes AM, Koo EH, Goldstein LS (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7384):216–220. doi:10.1038/nature10821

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20(23):4530–4539. doi:10.1093/hmg/ddr394

    Article  CAS  PubMed  Google Scholar 

  46. Yahata N, Asai M, Kitaoka S, Takahashi K, Asaka I, Hioki H, Kaneko T, Maruyama K, Saido TC, Nakahata T, Asada T, Yamanaka S, Iwata N, Inoue H (2011) Anti-Abeta drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer’s disease. PLoS ONE 6(9):e25788. doi:10.1371/journal.pone.0025788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107(9):4335–4340. doi:10.1073/pnas.0910012107

    Article  CAS  PubMed  Google Scholar 

  48. Tio M, Tan KH, Lee W, Wang TT, Udolph G (2010) Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. PLoS ONE 5(2):e9398. doi:10.1371/journal.pone.0009398

    Article  PubMed Central  PubMed  Google Scholar 

  49. Zhang L, Seitz LC, Abramczyk AM, Liu L, Chan C (2011) cAMP initiates early phase neuron-like morphology changes and late phase neural differentiation in mesenchymal stem cells. Cell Mol Life Sci 68(5):863–876. doi:10.1007/s00018-010-0497-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Pan Y, Chen X, Wang S, Yang S, Bai X, Chi X, Li K, Liu B, Li L (2005) In vitro neuronal differentiation of cultured human embryonic germ cells. Biochem Biophys Res Commun 327(2):548–556. doi:S0006-291X(04)02724-X

    Article  CAS  PubMed  Google Scholar 

  51. De Felici M, Dolci S, Pesce M (1993) Proliferation of mouse primordial germ cells in vitro: a key role for cAMP. Dev Biol 157(1):277–280. doi:10.1006/dbio.1993.1132

    Article  PubMed  Google Scholar 

  52. MacDonald SC, Fleetwood IG, Hochman S, Dodd JG, Cheng GK, Jordan LM, Brownstone RM (2003) Functional motor neurons differentiating from mouse multipotent spinal cord precursor cells in culture and after transplantation into transected sciatic nerve. J Neurosurg 98(5):1094–1103. doi:10.3171/jns.2003.98.5.1094

    Article  PubMed  Google Scholar 

  53. Essayan DM (2001) Cyclic nucleotide phosphodiesterases. J Allergy Clin Immunol 108(5):671–680. doi:S0091-6749(01)96426-7

    Article  CAS  PubMed  Google Scholar 

  54. Kim SS, Choi JM, Kim JW, Ham DS, Ghil SH, Kim MK, Kim-Kwon Y, Hong SY, Ahn SC, Kim SU, Lee YD, Suh-Kim H (2005) cAMP induces neuronal differentiation of mesenchymal stem cells via activation of extracellular signal-regulated kinase/MAPK. NeuroReport 16(12):1357–1361. doi:00001756-200508220-00020

    Article  CAS  PubMed  Google Scholar 

  55. Rooney GE, Howard L, O’Brien T, Windebank AJ, Barry FP (2009) Elevation of cAMP in mesenchymal stem cells transiently upregulates neural markers rather than inducing neural differentiation. Stem Cells Dev 18(3):387–398. doi:10.1089/scd.2008.0080

    Article  CAS  PubMed  Google Scholar 

  56. Kim BJ, Kim SS, Kim YI, Paek SH, Lee YD, Suh-Kim H (2004) Forskolin promotes astroglial differentiation of human central neurocytoma cells. Exp Mol Med 36(1):52–56

    Article  CAS  PubMed  Google Scholar 

  57. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2(8):599–609. doi:10.1038/35085068

    Article  CAS  PubMed  Google Scholar 

  58. Kao HT, Song HJ, Porton B, Ming GL, Hoh J, Abraham M, Czernik AJ, Pieribone VA, Poo MM, Greengard P (2002) A protein kinase A-dependent molecular switch in synapsins regulates neurite outgrowth. Nat Neurosci 5(5):431–437. doi:10.1038/nn840

    CAS  PubMed  Google Scholar 

  59. Sanchez C, Diaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61(2):133–168. doi:S0301-0082(99)00046-5

    Article  CAS  PubMed  Google Scholar 

  60. Haendel MA, Bollinger KE, Baas PW (1996) Cytoskeletal changes during neurogenesis in cultures of avain neural crest cells. J Neurocytol 25(4):289–301

    Article  CAS  PubMed  Google Scholar 

  61. Lee MK, Tuttle JB, Rebhun LI, Cleveland DW, Frankfurter A (1990) The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil Cytoskeleton 17(2):118–132. doi:10.1002/cm.970170207

    Article  CAS  PubMed  Google Scholar 

  62. Scintu F, Reali C, Pillai R, Badiali M, Sanna MA, Argiolu F, Ristaldi MS, Sogos V (2006) Differentiation of human bone marrow stem cells into cells with a neural phenotype: diverse effects of two specific treatments. BMC Neurosci 7:14

    Article  PubMed Central  PubMed  Google Scholar 

  63. Nagai A, Kim WK, Lee HJ, Jeong HS, Kim KS, Hong SH, Park IH, Kim SU (2007) Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow. PLoS ONE 2(12):e1272. doi:10.1371/journal.pone.0001272

    Article  PubMed Central  PubMed  Google Scholar 

  64. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H, Mimura T, Kitada M, Suzuki Y, Ide C (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113(12):1701–1710. doi:10.1172/JCI20935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Lam HJ, Patel S, Wang A, Chu J, Li S (2010) In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers. Tissue Eng Part A 16(8):2641–2648. doi:10.1089/ten.TEA.2009.0414

    Article  CAS  PubMed  Google Scholar 

  66. Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8(10):755–765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the manager of Stem Cell Technology Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2014_3020_MOESM1_ESM.jpg

Supplementary Fig. 1. RT-PCR analysis of oligodendrocyte, astrocyte and neuronal gene expression in differentiated hiPSCs after applying three defined induction media. (JPEG 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimi, A., Nadri, S., Ghollasi, M. et al. Comparison of different protocols for neural differentiation of human induced pluripotent stem cells. Mol Biol Rep 41, 1713–1721 (2014). https://doi.org/10.1007/s11033-014-3020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3020-1

Keywords

Navigation