Skip to main content

Advertisement

Log in

Proteome analysis of roots of wheat seedlings under aluminum stress

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The root apex is considered the first sites of aluminum (Al) toxicity and the reduction in root biomass leads to poor uptake of water and nutrients. Aluminum is considered the most limiting factor for plant productivity in acidic soils. Aluminum is a light metal that makes up 7 % of the earth’s scab dissolving ionic forms. The inhibition of root growth is recognized as the primary effect of Al toxicity. Seeds of wheat cv. Keumkang were germinated on petridish for 5 days and then transferred hydroponic apparatus which was treated without or with 100 and 150 μM AlCl3 for 5 days. The length of roots, shoots and fresh weight of wheat seedlings were decreased under aluminum stress. The concentration of K+, Mg2+ and Ca2+ were decreased, whereas Al3+ and P2O5 concentration was increased under aluminum stress. Using confocal microscopy, the fluorescence intensity of aluminum increased with morin staining. A proteome analysis was performed to identify proteins, which are responsible to aluminum stress in wheat roots. Proteins were extracted from roots and separated by 2-DE. A total of 47 protein spots were changed under Al stress. Nineteen proteins were significantly increased such as sadenosylmethionine, oxalate oxidase, malate dehydrogenase, cysteine synthase, ascorbate peroxidase and/or, 28 protein spots were significantly decreased such as heat shock protein 70, O-methytransferase 4, enolase, and amylogenin. Our results highlight the importance and identification of stress and defense responsive proteins with morphological and physiological state under Al stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional electrophoresis

IEF:

Isoelectric focusing

IPG:

Immobilized pH-gradient

LTQ-FTICR:

Linear trap quandropole-fourier transform ion cyclotron resonance

References

  1. Klara K, Pavel V, Ilja TP, Jenny R (2011) Plant proteome changes under abiotic stress-contribution of proteomics studies to understanding plant stress response. J Proteomics 74(8):1301–1322

    Article  Google Scholar 

  2. Kamal AHM, Ki-Hyun K, Kwang-Hyun S, Jong-Soon C, Byung-Kee B, Hisashi T, Hwa YH, Chul-Soo P, Woo SH (2010) Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Aus J Crop Sci 4(3):196–208

    CAS  Google Scholar 

  3. Qiaosong Y, Yuqi W, Jianjun Z, Weiping S, Chunmei Q, Xinxiang P (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7(5):737–749

    Article  Google Scholar 

  4. Dechassa D, Khairy S, Robert T, Zachary S (2011) Proteomic analysis of soybean roots under aluminum stress. J Plant Genomics. doi:10.1155/2011/282531

    Google Scholar 

  5. Suping Z, Roger S, Theodore WT (2009) Proteome changes induced by aluminum stress in tomato roots. J Exp Bot 60(6):1849–1857

    Article  Google Scholar 

  6. Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  7. Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128(1):63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohammad-Zaman N, Mahmoud T, Komatsu S (2011) Proteomics approach for identifying abiotic stress responsive proteins in soybean. In: Aleksandra S (ed) Soybean—molecular aspects of breeding Dr. ISBN: 978-953-307-240-1. doi:10.5772/15518

  9. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2(9):1131–1145

    Article  CAS  PubMed  Google Scholar 

  10. Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4(7):2072–2081

    Article  CAS  PubMed  Google Scholar 

  11. Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5(1):235–244

    Article  CAS  PubMed  Google Scholar 

  12. Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685

    Article  PubMed  Google Scholar 

  13. Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5(12):3162–3172

    Article  CAS  PubMed  Google Scholar 

  14. Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  15. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  CAS  PubMed  Google Scholar 

  16. Qureshi MI, Qadir S, Zolla L (2007) Proteomics-based dissection of stress-responsive in plants. J Plant Physiol 164(10):1239–1260

    Article  CAS  PubMed  Google Scholar 

  17. Goh CH, Lee YS (1999) Aluminum uptake and aluminum-induced rapid root growth of rice seedlings. J Plant Biol 42:41–48

    Article  Google Scholar 

  18. Ishikawa S, Wagatsuma T (1998) Plasma membrane permeability of root-tip cells following temporary exposure to Al ions is a rapid measure of Al tolerance among plant species. Plant Cell Physiol 39:516–525

    Article  CAS  Google Scholar 

  19. Vitorello VA, Capaldi FR, Stefanuto VA (2005) Recent advances in aluminum toxicity and resistance in higher plants. Brazilian J Plant Physiol 17:129–143

    Article  CAS  Google Scholar 

  20. Fageria NK, Baligar VC, Wright RJ (1988) Aluminum toxicity in crop plants. J Plant Nutr 11(1):303–319

    Article  Google Scholar 

  21. Jan F (1991) Aluminium effects on growth, nutrient net uptake and transport in 3 rice (Oryza sativa) clutivars with differnet sensitivity to aluminium. Physiol Plant 83(1):441–448

    Article  CAS  Google Scholar 

  22. Huang JW, Grunes DL, Kochian LV (1992) Aluminum effects on the kinetics of calcium uptake into cells of the wheat root apex. Quantification of calcium fluxes using a calcium-selective vibrating microelectrode. Planta 188(3):414–421

    Article  CAS  PubMed  Google Scholar 

  23. Rengel Z, Robinson DL (1989) Competitive Al3 + inhibition of net Mg2 + uptake by intact Lolium multiflorum roots. Plant Physiol 91(1):1407–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wenzel P, Mayer JE, Rao IM (2002) Aluminum stress inhibits accumulation of phosphorus in root apices of aluminum-sensitive but not aluminum-restant Brachiaria cultivate. J Plant Nutr 25(1):1821–1828

    Article  Google Scholar 

  25. Eticha D, Staß A, Horst WJ (2005) Localization of aluminium in the maize root apex: can morin detect cell wall-bound aluminium. J Exp Bot 56(415):1351–1357

    Article  CAS  PubMed  Google Scholar 

  26. Bancel E, Rogniaux H, Debiton C, Chambon C, Branlard G (2010) Extraction and Proteome Analysis of Starch Granule-Associated Proteins in Mature Wheat Kernel (Triticum aestivum L.). J Proteome Res 9(6):3299–3310

    Article  CAS  PubMed  Google Scholar 

  27. Fukuda T, Saito A, Wasaki J, Shinano T, Osaki M (2007) Metabolic alterations proposed by proteome in rice roots grown under low P and high Al concentration under pH. Plant Sci 172:1157–1165

    Article  CAS  Google Scholar 

  28. Lane BG, Dunwell JM, Bay JA, Schmitt MR, Cuming AC (1993) Germin, a marker of early plant development, is an oxalate oxidase. J Biol Chem 268:12239–12242

    CAS  PubMed  Google Scholar 

  29. Delisle G, Champoux M, Houde M (2001) Characterization of oxalate oxidase and cell death in Al-sensitive and tolerant wheat roots. Plant Cell Physiol 42(3):324–333

    Article  CAS  PubMed  Google Scholar 

  30. Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV (2003) Identification and characterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta × Columbia) by quantitative trait locus mapping: a physiologically simple but genetically complex trait. Plant Physiol 132(2):936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kobayashi Y, Furuta Y, Ohno T, Hara T, Koyama H (2005) Quantitative trait loci controlling aluminum tolerance in two accessions of Arabidopsis thaliana (Landsberg erecta and Cape Verde Islands). Plant Cell Environ 28:1516–1524

    Article  CAS  Google Scholar 

  32. Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Satio S, Shaff JE, Maron LG, Pineros MA, Kochian LV, Koyama H (2007) Characterization AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145(3):843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding Y, Ma QH (2004) Characterization of a cytosolic malate dehydrogenase cDNA which encodes an isozyme toward oxaloacetate reduction in wheat. Biochemie 86(8):509–518

    Article  CAS  Google Scholar 

  34. Yang Q, Wang Y, Zhang J, Shi W, Qian C, Peng X (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7(5):737–749

    Article  CAS  PubMed  Google Scholar 

  35. Zhou S, Sauve R, Thannhauser TW (2009) Proteome changes induced by aluminum stress in tomato roots. J Exp Bot 60(6):1849–1857

    Article  CAS  PubMed  Google Scholar 

  36. Davis DG, Swanson HR (2001) Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Env Exp Bot 46:95–108

    Article  CAS  Google Scholar 

  37. Bueno P, Piqueras A (2002) Effect of transition metals on stress, lipid peroxidation and antioxidant enzyme activities in tobacco cell cultures. Plant Growth Regul 36:161–167

    Article  CAS  Google Scholar 

  38. Li R, Bianchet MA, Talalay P, Amzel LM (1995) The three-dimensional structure of NAD (P): quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci USA 92(19):8846–8850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Watson HC, Walker NP, Shaw PJ, Bryant TN, Wendell PL, Fothergill LA, Perkins RE, Conroy SC, Dobson MJ, Tuite MF (1982) Sequence and structure of yeast phosphoglycerate kinase. EMBO J 1(12):1635–1640

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nowitzki U, Gelius-Dietrich G, Schwieger M, Henze K, Martin W (2004) Chloroplast phosphoglycerate kinase from Euglena gracilis: endosymbiotic gene replacement going against the tide. European J. Eur J Biochem 271(20):4123–4131

    Article  CAS  PubMed  Google Scholar 

  41. Matthews RG, Sheppard C, Goulding C (1998) Methylenetetrahydro folate reductase and methionine synthase: biochemistry and molecular biology. Eur J Pediatr 157(2):S54–S59

    Article  CAS  PubMed  Google Scholar 

  42. Thornton S, Anand N, Purcell D (2003) Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigenesis. J Mol Med 81(9):536–548

    Article  CAS  PubMed  Google Scholar 

  43. Voet, Donald J (2011) Biochemistry/Donald J. Voet; Judith G. Voet. New York, NY: Wiley, J. ISBN 978-0-470-57095-1

  44. Jeremy M, Tymoczko JL, Stryer L (2002) Biochemistry. In: Freeman WH (ed) 5th edn. Freeman, New York, p. 475–477

  45. Jami SK, Clark GB, Tulapati SA, Handley C, Roux SJ, Kirti PB (2008) Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol Biochem 46(12):1019–1030

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Q, Shirley N, Lahnstein J, Fincher GB (2005) Characterization and expression patterns of UDP-d-Glucuronate decarboxylase genes in barley. Plant Physiol 138(1):131–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Crombie H, Chengappa S, Hellyer A, Reid JSG (1998) A xyloglucan oligosaccharide-active, transglycosylating β-D-glucosidase from the cotyledons of nasturtium (Tropaeolum majus L.) seedlings: purification, properties and characterization of a cDNA clone. Plant J 15(1):27–38

    Article  CAS  PubMed  Google Scholar 

  48. Johnson JR, Cobb BG, Drew MC (1989) Hypoxic induction of anoxia tolerance in root tips of zea mays. Plant Physiol 91(3):837–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Andrews DL, MacAlpine DM, Johnson JR, Kelley PM, Cobb BG, Drew MC (1994) Differential induction of mRNAs for the glycolytic ethanolic fermentative pathways by hypoxis and anoxia in maize seedlings. Plant Physiol 106(4):1575–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We obtained financial support for this study from the AGENDA (9069532012), RDA, Korea to S. H. Woo, College of Agriculture, Life and Environments, Chungbuk National University, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Hee Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, M.W., Roy, S.K., Kamal, A.H.M. et al. Proteome analysis of roots of wheat seedlings under aluminum stress. Mol Biol Rep 41, 671–681 (2014). https://doi.org/10.1007/s11033-013-2905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2905-8

Keywords

Navigation