Skip to main content
Log in

SNP and haplotype analysis reveal IGF2 variants associated with growth traits in Chinese Qinchuan cattle

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Insulin-like growth factor 2 (IGF2) is a potent cell growth and differentiation factor and is implicated in mammals’ growth and development. The objective of this study was to evaluate the effects of the mutations in the bovine IGF2 with growth traits in Chinese Qinchuan cattle. Four single nucleotide polymorphisms (SNPs) were detected of the bovine IGF2 by DNA pool sequencing and forced polymerase chain reaction–restriction fragment length polymorphism (forced PCR–RFLP) methods. We also investigated haplotype structure and linkage disequilibrium (LD) coefficients for four SNPs in 817 individuals representing two main cattle breeds from China. The result of haplotype analysis showed eight different haplotypes and 27 combined genotypes within the study population. The statistical analyses indicated that the four SNPs, combined genotypes and haplotypes are associated with the withers height, body length, chest breadth, chest depth and body weight in Qinchuan cattle population (P < 0.05 or <0.01). The mutant-type variants and mutant haplotype (Hap 8: ATGG; likely to be the beneficial QTN allele) was superior for growth traits; the heterozygote diplotype was associated with higher growth traits compared to wild-type homozygote. Our results provide evidence that polymorphisms in the IGF2 gene are associated with growth traits, and may be used for marker-assisted selection in beef cattle breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Qiu H, Ju ZY, Chang ZJ (1993) A survey of cattle production in China. World Animal Review 3:75. http://www.fao.org/docrep/v0600t//v0600t07.htm

  2. Giannoukakis N, Deal C, Paquette J, Goodyer CG, Polychronakos C (1993) Parental genomic imprinting of the human IGF2 gene. Nat Genet 4:98–101

    Article  CAS  PubMed  Google Scholar 

  3. DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    Article  CAS  PubMed  Google Scholar 

  4. Dindot SV, Kent KC, Evers B, Loskutoff N, Womack J, Piedrahita JA (2004) Conservation of genomic imprinting at the XIST, IGF2, and GTL2 loci in the bovine. Mamm Genome 15:966–974

    Article  CAS  PubMed  Google Scholar 

  5. Dindot SV, Farin PW, Farin CE, Romano J, Walker S, Long C, Piedrahita JA (2004) Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Biol Reprod 71:470–478

    Article  CAS  PubMed  Google Scholar 

  6. Curchoe C, Zhang S, Bin Y, Zhang X, Yang L, Feng D, O’Neill M, Tian C (2005) Promoter-specific expression of the imprinted IGF2 gene in cattle (Bos taurus). Biol Reprod 73:1275–1281

    Article  CAS  PubMed  Google Scholar 

  7. Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:826–832

    Google Scholar 

  8. Casas E, Shackelford SD, Keele JW, Koohmaraie M, Smith TP, Stone RT (2003) Detection of quantitative trait loci for growth and carcass composition in cattle. J Anim Sci 81:2976–2983

    CAS  PubMed  Google Scholar 

  9. Schulman NF, Vitala MS, Koning JD, Virta J, Maki-Tanila A, Vilkki JH (2004) Quantitative trait loci for health in Finnish Ayrshire cattle. J Dairy Sci 87:443–449

    Article  CAS  PubMed  Google Scholar 

  10. Sambrook J, Russell DW (2002) Molecular cloning a laboratory manual (trans. Huang PT). Science, Beijing

  11. Gilbert RP, Bailey DR, Shannon NH (1993) Linear body measurements of cattle before and after twenty years of selection for postweaning gain when fed two different diets. J Anim Sci 71:1712–1720

    CAS  PubMed  Google Scholar 

  12. Huang YZ, He H, Wang J, Li ZJ, Lan XY, Lei CZ, Zhang EP, Zhang CL, Wang JQ, Shen QW, Chen H (2011) Sequence variants in the bovine nucleophosmin 1 gene, their linkage and their associations with body weight in native cattle breeds in China. Anim Genet 42:556–559

    Article  CAS  PubMed  Google Scholar 

  13. Yeh FC, Yang R, Boyle T (1999) POPGENE Version 31, Microsoft Window-based freeware for population genetic analysis. University of Alberta, Edmonton

    Google Scholar 

  14. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barrett JE, Fry B, Maller J, Daly MJ (2005) HAPLOVIEW: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  17. Amandine M, Yves A, Bertrand S, Gilles R, Hubert L, Dominique R (2010) Genetic variability and linkage disequilibrium patterns in the bovine DNAJA1 gene. Mol Biotechnol 44:190–197

    Article  Google Scholar 

  18. Zhao H, Nettleton D, Dekkers JCM (2007) Evaluation of linkage disequilibrium measures between multi-allelic markers as predictors of linkage disequilibrium between single nucleotide polymorphisms. Genet Res 89:1–6

    Article  CAS  PubMed  Google Scholar 

  19. Huang YZ, He H, Sun JJ, Wang J, Li ZJ, Lan XY, Lei CZ, Zhang CL, Zhang EP, Wang JQ, Chen H (2011) Haplotype combination of SREBP-1c gene sequence variants is associated with growth traits in cattle. Genome 54(6):507–516

    Article  CAS  PubMed  Google Scholar 

  20. Stephens M, Smith N, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 69:978–989

    Article  Google Scholar 

  21. Huang YZ, Wang KY, He H, Lan XY, Lei CZ, Zhang CL, Chen H (2013) Haplotype distribution in the GLI3 gene and their associations with growth traits in cattle. Gene 513:141–146

    Article  CAS  PubMed  Google Scholar 

  22. Holzer C, Precht M (1992) Multiple comparison procedures for normally distributed ANOVA models in SAS, SPSS, BMDP, and MINITAB. Comput Stat Data Anal 13:351–358

    Article  Google Scholar 

  23. Derecka K, Ahmad S, Hodgman TC, Hastings N, Royal MD, Woolliams JA, Flint AP (2009) Sequence variants in the bovine gonadotrophin releasing hormone receptor gene and their associations with fertility. Anim Genet 41:329–331

    Article  PubMed  Google Scholar 

  24. Huang YZ, Zhang EP, Li ZJ, Wang J, Huai YT, Ma L, Chen FY, Lan XY, Lei CZ, Wang JQ, Chen H (2010) Six novel coding SNPs of the NPM1 gene and their associations with growth traits in bovine. Arch Anim Breed 5(33):368–371

    Google Scholar 

  25. Boldman KG, Kriese LA, Van Vleck LD, Kachman SD (1993) A manual for use of MTDFREML: a set of programs to obtain estimates of variances and covariances. ARS USDA, Washington, DC

  26. Henderson CR (1986) Estimation of variances in animal model and reduced animal model for single traits and single records. J Dairy Sci 69:1394–1402

    Article  Google Scholar 

  27. Hickford JG, Forrest RH, Zhou H, Fang Q, Han J, Frampton CM, Horrell AL (2009) Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Anim Genet 41:64–72

    Article  PubMed  Google Scholar 

  28. Huang YZ, Zhang EP, Wang J, Huai YT, Lan XY, Ma L, Li ZJ, Ren G, Chen FY, Lei CZ, Wang JQ, Chen H (2010) Two novel SNPs of SREBP1 gene are associated with body weight and average daily gain in bovine. Anim Biotechnol 21:170–178

    Article  CAS  PubMed  Google Scholar 

  29. Huang YZ, Zhang EP, Chen H, Wang J, Li ZJ, Huai YT, Ma L, Lan XY, Ren G, Lei CZ, Fang XT, Wang JQ (2010) Novel 12-bp deletion in the coding region of the bovine NPM1 gene affects growth traits. J Appl Genet 51:199–202

    Article  PubMed  Google Scholar 

  30. Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45

    Article  PubMed  Google Scholar 

  31. Komar AA (2007) Silent SNPs: impact on gene function and phenotype. Pharmacogenomics 8(8):1075–1080

    Article  CAS  PubMed  Google Scholar 

  32. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A “silent” polymor phism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  CAS  PubMed  Google Scholar 

  33. Fallin D, Cohen A, Essioux L, Chumakov I, Blumenfeld M, Cohen D, Schork NJ (2001) Genetic analysis of case/control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer’s disease. Genome Res 11(1):143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Markljung E, Jiang L, Jaffe JD, Mikkelsen TS, Wallerman O et al (2009) ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biol 7(12):e1000256. doi:10.1371/journalpbio1000256

    Article  PubMed  PubMed Central  Google Scholar 

  35. Estelle J, Mercade A, Noguera JL, Perez-Enciso M, Ovilo C, Sanchez A, Folch JM (2005) Effect of the porcine IGF2-intron3-G3072A substitution in an outbred Large White population and in an Iberian × Landrace cross. J Anim Sci 83(12):2723–2728

    CAS  PubMed  Google Scholar 

  36. Jungerius BJ, van Laere AS, Te Pas MF, van Oost BA, Andersson L, Groenen MA (2004) The IGF2-intron3-G3072A substitutionexplains a major imprinted QTL effect on backfat thickness in a Meishan × European white pig intercross. Genet Res 84(2):95–101

    Article  CAS  PubMed  Google Scholar 

  37. Oczkowicz M, Tyra M, Walinowicz K, Rozycki M, Rejduch B (2009) Known mutation (A3072G) in intron 3 of the IGF2 gene is associated with growth and carcass composition in Polish pig breeds. J Appl Genet 50(3):257–259

    Article  CAS  PubMed  Google Scholar 

  38. Davoli R, Braglia S (2008) Molecular approaches in pig breeding to improve meat quality. Brief Funct Genomics Proteomic 6:313

    Article  Google Scholar 

  39. Gardan D, Gondret F, Louveau I (2006) Lipid metabolism and secretory function of porcine intramuscular adipocytes compared with subcutaneous and perirenal adipocytes. Am J Physiol Endocrinol M 291(2):E372–E380

    Article  CAS  Google Scholar 

  40. Hou G, Wang D, Guan S, Zeng H, Huang X, Ma Y (2010) Associated analysis of single nucleotide polymorphisms of IGF2 gene’s exon 8 with growth traits in Wuzhishan pig. Mol Biol Rep 37(1):497–500

    Article  CAS  PubMed  Google Scholar 

  41. Aslan O, Hamill RM, Davey G, McBryan J, Mullen AM, Gispert M, Sweeney T (2012) Variation in the IGF2 gene promoter region is associated with intramuscular fat content in porcine skeletal muscle. Mol Biol Rep 39:4101–4110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 31272408 and 30972080), Agricultural Science and Technology Innovation Projects of Shaanxi Province (Grant No. 2012NKC01-13), Program of National Beef Cattle and Yak Industrial Technology System (Grant No. CARS-38) and National 863 Program of China (Grant No. 2013AA102505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YZ., Zhan, ZY., Li, XY. et al. SNP and haplotype analysis reveal IGF2 variants associated with growth traits in Chinese Qinchuan cattle. Mol Biol Rep 41, 591–598 (2014). https://doi.org/10.1007/s11033-013-2896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2896-5

Keywords

Navigation