Skip to main content
Log in

Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (Nelumbo nucifera Gaertn)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Basic leucine zipper transcription factor (bZIP) is involved in signaling transduction for various stress responses. Here we reported a bZIP transcription factor (accession: JX887153) isolated from a salt-resistant lotus root using cDNA-AFLP approach with RT-PCR and RACE-PCR method. Full-length cDNA which consisted of a single open reading frame encoded a putative polypeptide of 488 amino acids. On the basis of 78, 76, and 75 % sequence similarity with the bZIPs from Medicago truncatula (XP_003596814.1), Carica papaya (ABS01351.1) and Arabidopsis thaliana (NP_563810.2), we designed it as LrbZIP. Semi quantitative RT-PCR results, performed on the total RNA extracted from tips of lotus root, showed that LrbZIP expression was increased with 250 mM NaCl treatment for 18 h. Effects of low temperature on the expression of LrbZIP was also studied, and its expression was significantly enhanced with a 4 °C treatment for 12 h. In addition, LrbZIP expression was strongly induced by treatment with exogenous 100 μM ABA. To evaluate its function across the species, tobacco (Nicotiana tabacum L.) was transformed with LrbZIP in a binary vector construct. Transgenic plants exhibited higher resistance as compared with the control according to the results of the root growth, chlorophyll content and electrolyte leakage when exposed to NaCl treatment. In addition, LrCDPK2, LrLEA, and TPP also showed enhanced expression in the transgenic plants. Overall, expression of LrbZIP was probably very important for salt-resistant lotus root to survive through salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  PubMed  CAS  Google Scholar 

  2. Maas E, Grieve C (1990) Spike and leaf development in salt-stressed wheat. Crop Sci 30:1309–1313

    Article  Google Scholar 

  3. Kader MA, Lindberg S (2010) Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238

    Article  PubMed  Google Scholar 

  4. Husain S, Munns R, Condon A (2003) Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Aus J of Agri Res 54:589–598

    Article  CAS  Google Scholar 

  5. Munns R, James R, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  PubMed  CAS  Google Scholar 

  6. Hall J, Flowers T (1973) The effect of salt on protein synthesis in the halophyte Suaeda maritima. Planta 110:361–368

    Article  CAS  Google Scholar 

  7. Murguia JR, Belles JM, Serrano R (1995) A salt-sensitive 3′(2′),5′-bisphosphate nucleotidase involved in sulfate activation. Science 267:232–234

    Article  PubMed  CAS  Google Scholar 

  8. Salt DE (2004) Update on plant ionomics. Plant Physiol 136:2451–2456

    Article  PubMed  CAS  Google Scholar 

  9. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  PubMed  CAS  Google Scholar 

  10. Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotech 21:1215–1221

    Article  CAS  Google Scholar 

  11. Santa-Cruz A, Acosta M, Rus A, Bolarin MC (1999) Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol Biochem 37:65–71

    Article  CAS  Google Scholar 

  12. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechnol 14:194–199

    Article  PubMed  CAS  Google Scholar 

  13. Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun XL, Chen LJ, Zhu YM (2011) A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol 168(11):1241–1248. doi:10.1016/j.jplph.2011.01.016

    Article  PubMed  CAS  Google Scholar 

  14. Zhang H, Mao X, Jing R, Chang X, Xie H (2011) Characterization of a common wheat (Triticum aestivum L.) TaSnRK2. 7 gene involved in abiotic stress responses. J Exp Bot 62:975–988

    Article  PubMed  CAS  Google Scholar 

  15. Yokotani N, Higuchi M, Kondou Y, Ichikawa T, Iwabuchi M, Hirochika H, Matsui M, Oda K (2011) A novel chloroplast protein, CEST induces tolerance to multiple environmental stresses and reduces photooxidative damage in transgenic Arabidopsis. J Exp Bot 62:557–569

    Article  PubMed  CAS  Google Scholar 

  16. Kang HG, Kim J, Kim B, Jeong H, Choi SH, Kim EK, Lee HY, Lim PO (2011) Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci 180:634–641

    Article  PubMed  CAS  Google Scholar 

  17. Xu GY, Rocha PSCF, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia X (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234(1):47–59. doi:10.1007/s00425-011-1386-z

    Article  PubMed  CAS  Google Scholar 

  18. Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LH (2010) Erratum to: characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Bio 72:567–568

    Article  CAS  Google Scholar 

  19. Rodriguez-Uribe L, Connell MAO (2006) A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris). J Exp Bot 5:1391–1398

    Article  Google Scholar 

  20. Jakoby M, Weisshaar B, Droge-Laser W, Carbajosa JV, Tiedeman J, Kroj T (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  21. Zhang X, Wang L, Meng H, Wen H, Fan Y, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75:365–378

    Article  PubMed  CAS  Google Scholar 

  22. Yanez M, Caceres S, Orellana S, Bastıas A, Verdugo I, Ruiz-Lara S, Casaretto JA (2009) An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep 28:1497–1507

    Article  PubMed  CAS  Google Scholar 

  23. Wang YC, Gao CQ, Liang YN, Wang C, Yang CP, Liu GF (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress into tobacco plants. J Plant Physiol 167:222–230

    Article  PubMed  CAS  Google Scholar 

  24. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidospsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high salinity conditions. Pro Natl Acad Sci USA 97:11632–11637

    Article  CAS  Google Scholar 

  25. Xue GP, Loveridge CW (2003) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  Google Scholar 

  26. Zou MJ, Guan YC, Ren HB, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    Article  PubMed  CAS  Google Scholar 

  27. Kim S (2005) The role of ABF family bZIP class transcription factors in stress response. Physiol Plant 126:519–527

    Google Scholar 

  28. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  29. Kobayashi Y, Murata M, Minami H, Yamamoto S, Kagaya Y, Hobo T, Yamamoto A, Hattori T (2005) Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA-response element-binding factors. Plant J 44:939–949

    Article  PubMed  CAS  Google Scholar 

  30. Du H, Zhao X, You JS, Park JY, Kim SH, Chang KJ (2010) Antioxidant and hepatic protective effects of lotus root hot water extract with taurine supplementation in rats fed a high fat diet. J Biomed Sci 17(Suppl 1):S39. doi:10.1186/1423-0127-17-S1-S39

    Article  PubMed  Google Scholar 

  31. Sakamoto Y (1977) Lotus. Hosei University Press, Tokyo

    Google Scholar 

  32. Liu J, Zhang M, Wang S (2010) Processing characteristics and flavour of full lotus root powder beverage. J Sci Food Agric 90:2482–2489

    Article  PubMed  CAS  Google Scholar 

  33. Slocum PD, Robinson P (1996) Water gardening, water lilies and lotuses. Timber, Portland, OR

    Google Scholar 

  34. Borgi W, Ghedira K, Chouchane N (2007) Antiinflammatory and analgesic activities of zizyphus lotus root barks. Fitoterapia 78:16–19

    Article  PubMed  CAS  Google Scholar 

  35. Renato BRAZ, Hechenleitner AAW, Cavalcanti OA (2007) Extraction, structural modification and characterization of lotus roots polysaccharides (Nelumbo nucifera Gaertn). Excipient with potential application in modified drug delivery systems. Lat Am J Pharm 26:706–710

    Google Scholar 

  36. Terashima M, Awano K, Honda Y, Yoshino N, Mori T, Fujita H, Ohashi Y, Seguchi O, Kobayashi K, Yamagishi M, Fitzgerald PJ, Yock PG, Maeda K (2011) Arteries within the artery after kawasaki diease-A lotus root appearance by intravascular ultrasound. Circulation 106(7):887. doi:10.1161/01.CIR.0000030708.86783.92

    Article  Google Scholar 

  37. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nuc Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  38. Lang P, Zhang C, Ebel R, Dane F, Dozier W (2005) Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene 359:111–118

    Article  PubMed  CAS  Google Scholar 

  39. Cheng LB, Huan ST, Sheng YD, Hua XJ, Song SQ, Jing XM (2009) GMCHI, cloned from soybean [Glycine max (L.) Meer.], enhances survival in transgenic Arabidopsis under abiotic stress. Plant Cell Rep 28:145–153

    Article  PubMed  Google Scholar 

  40. Vuylsteke M, Daele HVD, Vercauteren A, Zabeau M, Kuiper M (2006) Genetic dissection of transcriptional regulation by cDNAAFLP. Plant J 45:439–446

    Article  PubMed  CAS  Google Scholar 

  41. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  42. Hiscox JD, Israelstam GF (1979) A method for extraction of chlorophyll from leaf tissue without maceration. Can J Bot 59:463–469

    Google Scholar 

  43. Umezawa T, Mizumo K, Fujimura T (2002) Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean with cDNAa-AFLP. Plant Cell Environ 25:1617–1625

    Article  CAS  Google Scholar 

  44. Hurst HC (1994) Transcription factors 1: bZIP proteins. Protein Profile 1:123–168

    PubMed  CAS  Google Scholar 

  45. Correa LGG, Riano-Pachon DM, Schrago CG, Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3(8):e2944

    Article  PubMed  Google Scholar 

  46. Amoutzias GD, Veron AS, Weiner J, Robinson-Rechavi M, Bornberg-Bauer E, Oliver SG, Robertson DL (2007) One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-Binding site specificity. Mol Biol Evol 24:827–835

    Article  PubMed  CAS  Google Scholar 

  47. Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a bzip transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Bio 10:230–248

    Article  Google Scholar 

  48. Dong XF, Cui N, Wang L, Zhao XC, Qu B, Li TL, Zhang GL (2012) The SnRK protein kinase family and the function of SnRK1 protein kinase. Int J Agric Biol 14:575–579

    CAS  Google Scholar 

  49. Cho YH, Hong JW, Kim EC, Yoo SD (2012) Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development. Plant Physiol 158:1955–1964

    Article  PubMed  CAS  Google Scholar 

  50. Cheng C, Yun KY, Ressom HW, Mohanty B, Bajic VB, Jia YL, Yun SJ, de los Reyes BG (2007) An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics 8:175

    Article  PubMed  Google Scholar 

  51. Sembdner G, Parthie B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Ann Rev Plant Biol 44:569–589

    Article  CAS  Google Scholar 

  52. Yang S, Zeevaart J (2006) Expression of ABA 8′-hydroxylases in relation to leaf water relations and seed development in bean. Plant J 47:675–686

    Article  PubMed  CAS  Google Scholar 

  53. Finkelstein R, Gampala S, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45

    Google Scholar 

  54. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  55. Li C, Junttila O, Heino P, Palva E (2003) Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiol 23:481–487

    Article  PubMed  CAS  Google Scholar 

  56. Menkens AE, Schindler U, Cashmore AR (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIPs protein. Trends Biochem Sci 20:506–512

    Article  PubMed  CAS  Google Scholar 

  57. Kim SY (2006) The role of ABF family bZIP class transcription factors in stress response. Physiol Plant 126:519–527

    CAS  Google Scholar 

  58. Jaglo K, Kleff S, Amundsen K, Zhang X, Haake V, Zhang J, Deits T, Thomashow M (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  PubMed  CAS  Google Scholar 

  59. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803

    Article  CAS  Google Scholar 

  60. García MNM, Giammaria V, Grandellis C, Téllez-Iñón MT, Ulloa RM, Capiati DA (2012) Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta 235:761–778

    Article  Google Scholar 

  61. Hossain MA, Lee YJ, Cho JI, Ahn CH, Lee SK, Jeon JS, Kang H, Lee CH, An G, Park PB (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–566

    Article  Google Scholar 

  62. Kim S, Kang JY, Cho D-I, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  PubMed  CAS  Google Scholar 

  63. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA forfull activation. Plant J 61:672–685

    Article  PubMed  CAS  Google Scholar 

  64. Kang J, Choi H, Im M, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    Article  PubMed  CAS  Google Scholar 

  65. Abdeen A, Schnell J, Miki B (2010) Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics 211:69–90

    Article  Google Scholar 

  66. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  PubMed  CAS  Google Scholar 

  67. Shi H, Lee B, Wu S, Zhu J (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotech 21:81–85

    Article  CAS  Google Scholar 

  68. Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Cur Opin Biotechnol 13:146–150

    Article  CAS  Google Scholar 

  69. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  PubMed  CAS  Google Scholar 

  70. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  PubMed  CAS  Google Scholar 

  71. Xue Z, Zhi D, Xue G, Zhang H, Zhao Y, Xia G (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  72. Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na(+)/H(+) antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    Article  PubMed  CAS  Google Scholar 

  73. Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  74. Ludwig AA, Romeis T, Jones JDG (2004) CDPK mediated signalling pathways: specificity and cross talk. J Exp Bot 55:181–188

    Article  PubMed  CAS  Google Scholar 

  75. Sathyanarayanan P, Poovaiah B (2004) Decoding Ca(2+) signals in plants. CRC Crit Rev Plant Sci 23:1–11

    Article  PubMed  CAS  Google Scholar 

  76. Witte CP, Keinath N, Dubiella U, Demoulière R, Seal A, Romeis T (2010) Tobacco calcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinase cascade that regulates stress response. J Biological Chem 285:9740–9748

    Article  CAS  Google Scholar 

  77. Romeis T (2001) Protein kinases in the plant defence response. Curr Opin Plant Biol 4:407–414

    Article  PubMed  CAS  Google Scholar 

  78. Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    Article  PubMed  CAS  Google Scholar 

  79. Ginger A, Swire-Clark WR, Marcotte JR (1999) The wheat LEA protein Em functions as an osmoprotective molecule in Saccharomyces cerevisia. Plant Mol Biol 39:117–128

    Article  Google Scholar 

  80. Zhang Y, Li Y, Lai J, Zhang H, Liu Y, Liang L, Xie Q (2012) Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis. Mol Biol Rep 39:4627–4633

    Article  PubMed  CAS  Google Scholar 

  81. Imai L, Chang A, Otha EA, Bray TM (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248

    Article  PubMed  CAS  Google Scholar 

  82. Zhang L, Ohta A, Takagi M, Imai R (2000) Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J Biochem 127:611–616

    Article  PubMed  CAS  Google Scholar 

  83. Lai SLN, Grlyani VH, Khurana PJ (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663

    Article  Google Scholar 

  84. Blackman SA, Wettlaufer SH, Obendorf RL, Leopold AC (1991) Maturation proteins associated with desiccation tolerance in soybean. Plant Physiol 96:868–874

    Article  PubMed  CAS  Google Scholar 

  85. Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 1:249–257

    Google Scholar 

  86. RoyChoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Article  PubMed  CAS  Google Scholar 

  87. Kondrak M, Marincs F, Antal F, Juhasz Z, Banfalvi Z (2012) Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biol 12:74

    Article  PubMed  Google Scholar 

  88. Reina-Bueno M, Argandoña M, Salvador M, Rodríguez-Moya J, Iglesias-Guerra F, Csonka LN, Nieto JJ, Vargas C (2012) Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium Chromohalobacter salexigens. PLoS One 7:e33587

    Article  PubMed  CAS  Google Scholar 

  89. Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440

    Article  PubMed  CAS  Google Scholar 

  90. Miranda JA, Avonce N, Suárez R, Thevelein JM, Van Dijck P, Iturriaga G (2007) A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421

    Article  PubMed  CAS  Google Scholar 

  91. Ge L, Chao D, Shi M et al (2008) Overexpression of the trehalose-6-phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress-responsive genes. Planta 228:191–201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Xiong Liben for her suggestions and language check. This work was supported by Special Fund for Agro-scientific Research in the Public Interest (200903017-02), China Postdoctoral Science Foundation (2012M511805) and Jiangsu Postdoctoral Science Foundation (1102144C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangjun Li.

Additional information

Libao Cheng and Shuyan Li have contribution equally to this research work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, L., Li, S., Hussain, J. et al. Isolation and functional characterization of a salt responsive transcriptional factor, LrbZIP from lotus root (Nelumbo nucifera Gaertn). Mol Biol Rep 40, 4033–4045 (2013). https://doi.org/10.1007/s11033-012-2481-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2481-3

Keywords

Navigation