Skip to main content
Log in

Combination of AT-101/cisplatin overcomes chemoresistance by inducing apoptosis and modulating epigenetics in human ovarian cancer cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We investigated the effects of AT-101/cisplatin combination treatment on the expression levels of apoptotic proteins and epigenetic events such as DNA methyltransferase (DNMT) and histone deacetylase (HDAC) enzyme activities in OVCAR-3 and MDAH-2774 ovarian cancer cells. XTT cell viability assay was used to evaluate cytotoxicity. For showing apoptosis, both DNA Fragmentation and caspase 3/7 activity measurements were performed. The expression levels of apoptotic proteins were assessed by human apoptosis antibody array. DNMT and HDAC activities were evaluated by ELISA assay and mRNA levels of DNMT1 and HDAC1 genes were quantified by qRT-PCR. Combination of AT-101/cisplatin resulted in strong synergistic cytotoxicity and apoptosis in human ovarian cancer cells. Combination treatment reduced some pivotal anti-apoptotic proteins such as Bcl-2, HIF-1A, cIAP-1, XIAP in OVCAR-3 cells, whereas p21, Bcl-2, cIAP-1, HSP27, Clusterin and XIAP in MDAH-2774 cells. Among the pro-apoptotic proteins, Bad, Bax, Fas, phospho-p53 (S46), Cleaved caspase-3, SMAC/Diablo, TNFR1 and Cytochrome c were induced in OVCAR-3 cells, whereas, Bax, TRAILR2, FADD, p27, phospho-p53 (S46), Cleaved caspase-3, Cytochrome c, SMAC/Diablo and TNFR1 were induced in MDAH-2774 cells. Combination treatment also inhibited both DNMT and HDAC activities and also mRNA levels in both ovarian cancer cells. AT-101 exhibits great potential in sensitization of human ovarian cancer cells to cisplatin treatment in vitro, suggesting that the combination of AT-101 with cisplatin may hold great promise for development as a novel chemotherapeutic approach to overcome platinum-resistance in human ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herzog TJ, Sill MW, Walker JL et al (2011) A phase II study of two topotecan regimens evaluated in recurrent platinum-sensitive ovarian, fallopian tube or primary peritoneal cancer: a Gynecologic Oncology Group Study (GOG 146Q). Gynecol Oncol 120:454–458

    Article  PubMed  CAS  Google Scholar 

  2. Rakowski JA, Ahmad S, Holloway RW (2012) Use of pegylated liposomal doxorubicin in the management of platinum-sensitive recurrent ovarian cancer: current concepts. Expert Rev Anticancer Ther 12:31–40

    Article  PubMed  CAS  Google Scholar 

  3. Dear RF, Gao B, Harnett P (2010) Recurrent ovarian cancer: treatment with pegylated liposomal doxorubicin; a Westmead Cancer Care Centre experience. Asia Pac J Clin Oncol 6:66–73

    Article  PubMed  Google Scholar 

  4. Broxterman HJ, Gotink KJ, Verheul HM (2009) Understanding the causes of multidrug resistance in cancer: a comparison of doxorubicin and sunitinib. Drug Resist Updat 12:114–126

    Article  PubMed  CAS  Google Scholar 

  5. Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 14(Suppl 1):35–48

    Article  PubMed  Google Scholar 

  6. Balch C, Huang TH, Brown R et al (2004) The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol 191:1552–1572

    Article  PubMed  CAS  Google Scholar 

  7. Reed JC (2006) Drug insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms. Nat Clin Pract Oncol 3:388–398

    Article  PubMed  CAS  Google Scholar 

  8. Galluzzi L, Senovilla L, Vitale I et al (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–1883

    Article  PubMed  CAS  Google Scholar 

  9. Zerp SF, Stoter R, Kuipers G et al (2009) AT-101, a small molecule inhibitor of anti-apoptotic Bcl-2 family members, activates the SAPK/JNK pathway and enhances radiation-induced apoptosis. Radiat Oncol 4:47

    Article  PubMed  Google Scholar 

  10. Bauer JA, Trask DK, Kumar B et al (2005) Reversal of cisplatin resistance with a BH3 mimetic, (−)-gossypol, in head and neck cancer cells: role of wild-type p53 and Bcl-xL. Mol Cancer Ther 4:1096–1104

    Article  PubMed  CAS  Google Scholar 

  11. Kisim A, Atmaca H, Cakar B et al (2012) Pretreatment with AT-101 enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of breast cancer cells by inducing death receptors 4 and 5 protein levels. J Cancer Res Clin Oncol 138:1155–1163

    Article  PubMed  CAS  Google Scholar 

  12. Zeller C, Brown R (2010) Therapeutic modulation of epigenetic drivers of drug resistance in ovarian cancer. Ther Adv Med Oncol 2:319–329

    Article  PubMed  CAS  Google Scholar 

  13. Asadollahi R, Hyde CA, Zhong XY (2010) Epigenetics of ovarian cancer: from the lab to the clinic. Gynecol Oncol 118:81–87

    Article  PubMed  CAS  Google Scholar 

  14. Hamilton TC, Young RC, McKoy WM et al (1983) Characterization of a human ovarian carcinoma cell line (NIH: OVCAR-3) with androgen and estrogen receptors. Cancer Res 43:5379–5388

    PubMed  CAS  Google Scholar 

  15. Erten C, Karaca B, Kucukzeybek Y et al (2009) Regulation of growth factors in hormone- and drug-resistant prostate cancer cells by synergistic combination of docetaxel and octreotide. BJU Int 104:107–114

    Article  PubMed  CAS  Google Scholar 

  16. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs on enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  17. Lin YG, Kunnumakkara AB, Nair A et al (2007) Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res 13:3423–3430

    Article  PubMed  CAS  Google Scholar 

  18. Atmaca H, Gorumlu G, Karaca B et al (2009) Combined gossypol and zoledronic acid treatment results in synergistic induction of cell death and regulates angiogenic molecules in ovarian cancer cells. Eur Cytokine Netw 20:121–130

    PubMed  CAS  Google Scholar 

  19. Sanli UA, Gorumlu G, Erten C et al (2009) Targeting apoptosis in the hormone- and drug-resistant prostate cancer cell line, DU-145, by gossypol/zoledronic acid combination. Cell Biol Int 33:1165–1172

    Article  PubMed  CAS  Google Scholar 

  20. Cengiz E, Karaca B, Kucukzeybek Y et al (2010) Overcoming drug resistance in hormone- and drug-refractory prostate cancer cell line, PC-3 by docetaxel and gossypol combination. Mol Biol Rep 37:1269–1277

    Article  PubMed  CAS  Google Scholar 

  21. Hu W, Wang F, Tang J et al (2012) Proapoptotic protein Smac mediates apoptosis in cisplatin-resistant ovarian cancer cells when treated with the anti-tumor agent AT101. J Biol Chem 287:68–80

    Article  PubMed  CAS  Google Scholar 

  22. Moretti L, Li B, Kim KW et al (2010) AT-101, a Pan-Bcl-2 inhibitor, leads to radiosensitization of non-small cell lung cancer. J Thorac Oncol 5:680–687

    PubMed  Google Scholar 

  23. Liu G, Kelly WK, Wilding G et al (2009) An open-label, multicenter, phase I/II study of single-agent AT-101 in men with castrate-resistant prostate cancer. Clin Cancer Res 15:3172–3176

    Article  PubMed  CAS  Google Scholar 

  24. Ready N, Karaseva NA, Orlov SV et al (2011) Double-blind, placebo-controlled, randomized phase 2 study of the proapoptotic agent AT-101 plus docetaxel, in second-line non-small cell lung cancer. J Thorac Oncol 6:781–785

    Article  PubMed  Google Scholar 

  25. Heist RS, Fain J, Chinnasami B et al (2010) Phase I/II study of AT-101 with topotecan in relapsed and refractory small cell lung cancer. J Thorac Oncol 5:1637–1643

    Article  PubMed  Google Scholar 

  26. Nie C, Tian C, Zhao L et al (2008) Cysteine 62 of Bax is critical for its conformational activation and its proapoptotic activity in response to H2O2-induced apoptosis. J Biol Chem 283:15359–15369

    Article  PubMed  CAS  Google Scholar 

  27. Mohan J, Gandhi AA, Bhavya BC et al (2006) Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J Biol Chem 281:17599–17611

    Article  PubMed  CAS  Google Scholar 

  28. Eliopoulos AG, Kerr DJ, Herrod J et al (1995) The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and bcl-2. Oncogene 11:1217–1228

    PubMed  CAS  Google Scholar 

  29. Daveraux QL, Takahashi R, Saivesen QS et al (1997) X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–303

    Article  Google Scholar 

  30. Roy N, Deveraux QL, Takahashi R et al (1997) The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J 16:6914–6925

    Article  PubMed  CAS  Google Scholar 

  31. Liu HF, Hsiao PW, Chao C (2008) Celecoxib induces p53-PUMA pathway for apoptosis in human colorectal cancer cells. Chem Biol Interact 176:48–57

    Article  PubMed  CAS  Google Scholar 

  32. Li R, Hannon GJ, Beach D, Stillman B (1996) Subcellular distribution of p21 and PCNA in normal and repair-deficient cells following DNA damage. Curr Biol 6:189–199

    Article  PubMed  CAS  Google Scholar 

  33. Stangelberger A, Schally AV, Rick FG et al (2012) Inhibitory effects of antagonists of growth hormone releasing hormone on experimental prostate cancers are associated with upregulation of wild-type p53 and decrease in p21 and mutant p53 proteins. Prostate 72:555–565

    Article  PubMed  CAS  Google Scholar 

  34. Balch C, Fang F, Matei DE et al (2009) Minireview: epigenetic changes in ovarian cancer. Endocrinology 150:4003–4011

    Article  PubMed  CAS  Google Scholar 

  35. Glasspool RM, Teodoridis JM, Brown R (2006) Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer 94:1087–1092

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burcak Karaca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karaca, B., Atmaca, H., Bozkurt, E. et al. Combination of AT-101/cisplatin overcomes chemoresistance by inducing apoptosis and modulating epigenetics in human ovarian cancer cells. Mol Biol Rep 40, 3925–3933 (2013). https://doi.org/10.1007/s11033-012-2469-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2469-z

Keywords

Navigation