Skip to main content
Log in

Quantitative assessment of the associations between MTHFR C677T and A1298C polymorphisms and risk of fractures: a meta-analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Many studies have investigated the associations between methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and risk of fractures, but the impact of MTHFR polymorphisms on fractures risk is unclear owing to the obvious inconsistence among those studies. This study aims to quantify the strength of association between MTHFR C677T and A1298C polymorphisms and risk of fractures. We searched the PubMed, Embase and Wanfang databases for articles relating the association between MTHFR C677T and A1298C polymorphisms and risk of fractures in humans. We estimated summary odds ratios (ORs) with their confidence intervals (CIs) to assess the associations. Meta-analyses suggested MTHFR C677T polymorphism was associated with increased risk of any site fractures (for T vs. C, OR = 1.17, 95 % CI 1.03–1.32; for TT vs. CC, OR = 1. 31, 95 % CI 1.11–1.54; for TT vs. CT, OR = 1.22, 95 % CI 1.04–1.43; for TT vs. CT/CC, OR = 1.31, 95 % CI 1.13–1.51). Besides, MTHFR A1298C polymorphism was also associated with increased risk of any site fractures. Subgroup meta-analyses suggested MTHFR C677T polymorphism was associated with increased risk of vertebral fractures under three genetic contrast modes (for TT vs. CC, OR = 1.43, 95 % CI 1.05–1.95; for TT vs. CT, OR = 1.36, 95 % CI 1.01–1.85; for TT vs. CT/CC, OR = 1.50, 95 % CI 1.17–1.91), but there was no association between MTHFR C677T polymorphism and risk of hip fractures and non-vertebral fractures (all P values were more than 0.05). Thus, individuals with homozygote genotype TT of MTHFR C677T have obviously increased risk of vertebral fractures compared those with heterozygote genotype CT or homozygote genotype CC. There is no association between MTHFR C677T polymorphism and risk of hip fractures and non-vertebral fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377:1276–1287

    Article  PubMed  CAS  Google Scholar 

  2. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  3. Ensrud KE, Schousboe JT (2011) Clinical practice. Vertebral fractures. N Engl J Med 364:1634–1642

    Article  PubMed  CAS  Google Scholar 

  4. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Article  PubMed  Google Scholar 

  5. Stewart TL, Ralston SH (2000) Role of genetic factors in the pathogenesis of osteoporosis. J Endocrinol 166:235–245

    Article  PubMed  CAS  Google Scholar 

  6. Hosoi T (2010) Genetic aspects of osteoporosis. J Bone Miner Metab 28:601–607

    Article  PubMed  CAS  Google Scholar 

  7. Cheung CL, Xiao SM, Kung AW (2010) Genetic epidemiology of age-related osteoporosis and its clinical applications. Nat Rev Rheumatol 6:507–517

    Article  PubMed  Google Scholar 

  8. Goyette P, Pai A, Milos R et al (1998) Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm Genome 9:652–656

    Article  PubMed  CAS  Google Scholar 

  9. Kang SS, Zhou J, Wong P et al (1988) Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 43:414

    PubMed  CAS  Google Scholar 

  10. Goyette P, Sumner JS, Milos R et al (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet 7:195–200

    Article  PubMed  CAS  Google Scholar 

  11. Weisberg I, Tran P, Christensen B et al (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64:169–172

    Article  PubMed  CAS  Google Scholar 

  12. Villadsen MM, Bunger MH, Carstens M et al (2005) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is associated with osteoporotic vertebral fractures, but is a weak predictor of BMD. Osteoporos Int 16:411–416

    Article  PubMed  CAS  Google Scholar 

  13. Urano W, Furuya T, Inoue E et al (2009) Associations between methotrexate treatment and methylenetetrahydrofolate reductase gene polymorphisms with incident fractures in Japanese female rheumatoid arthritis patients. J Bone Miner Metab 27:574–583

    Article  PubMed  CAS  Google Scholar 

  14. Zhu K, Beilby J, Dick IM et al (2009) The effects of homocysteine and MTHFR genotype on hip bone loss and fracture risk in elderly women. Osteoporos Int 20:1183–1191

    Article  PubMed  CAS  Google Scholar 

  15. Bathum L, von Bornemann Hjelmborg J, Christiansen L et al (2004) Evidence for an association of methylene tetrahydrofolate reductase polymorphism C677T and an increased risk of fractures: results from a population-based Danish twin study. Osteoporos Int 15:659–664

    Article  PubMed  CAS  Google Scholar 

  16. Yazdanpanah N, Uitterlinden AG, Zillikens MC et al (2008) Low dietary riboflavin but not folate predicts increased fracture risk in postmenopausal women homozygous for the MTHFR 677 T allele. J Bone Miner Res 23:86–94

    Article  PubMed  CAS  Google Scholar 

  17. Gjesdal CG, Vollset SE, Ueland PM et al (2007) Plasma homocysteine, folate, and vitamin B 12 and the risk of hip fracture: the hordaland homocysteine study. J Bone Miner Res 22:747–756

    Article  PubMed  CAS  Google Scholar 

  18. Abrahamsen B, Madsen JS, Tofteng CL et al (2003) A common methylenetetrahydrofolate reductase (C677T) polymorphism is associated with low bone mineral density and increased fracture incidence after menopause: longitudinal data from the Danish osteoporosis prevention study. J Bone Miner Res 18:723–729

    Article  PubMed  CAS  Google Scholar 

  19. Shiraki M, Urano T, Kuroda T et al (2008) The synergistic effect of bone mineral density and methylenetetrahydrofolate reductase (MTHFR) polymorphism (C677T) on fractures. J Bone Miner Metab 26:595–602

    Article  PubMed  CAS  Google Scholar 

  20. Valero C, Alonso MA, Zarrabeitia MT et al (2007) MTHFR C677T polymorphism and osteoporotic fractures. Horm Metab Res 39:543–547

    Article  PubMed  CAS  Google Scholar 

  21. Jorgensen HL, Madsen JS, Madsen B et al (2002) Association of a common allelic polymorphism (C677T) in the methylene tetrahydrofolate reductase gene with a reduced risk of osteoporotic fractures. A case control study in Danish postmenopausal women. Calcif Tissue Int 71:386–392

    Article  PubMed  CAS  Google Scholar 

  22. Agueda L, Urreizti R, Bustamante M et al (2010) Analysis of three functional polymorphisms in relation to osteoporosis phenotypes: replication in a Spanish cohort. Calcif Tissue Int 87:14–24

    Article  PubMed  CAS  Google Scholar 

  23. Li M, Lau EM, Woo J (2004) Methylenetetrahydrofolate reductase polymorphism (MTHFR C677T) and bone mineral density in Chinese men and women. Bone 35:1369–1374

    Article  PubMed  CAS  Google Scholar 

  24. Hong X, Hsu YH, Terwedow H et al (2007) Association of the methylenetetrahydrofolate reductase C677T polymorphism and fracture risk in Chinese postmenopausal women. Bone 40:737–742

    Article  PubMed  CAS  Google Scholar 

  25. Attia J, Thakkinstian A, D’Este C (2003) Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol 56:297–303

    Article  PubMed  Google Scholar 

  26. Petitti DB (2000) Meta-analysis, decision analysis, and cost effectiveness analysis: methods for quantitative synthesis in medicine, vol 2. Oxford University Press, New York

    Google Scholar 

  27. Salanti G, Amountza G, Ntzani EE et al (2005) Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet 13:840–848

    Article  PubMed  CAS  Google Scholar 

  28. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    PubMed  CAS  Google Scholar 

  29. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  30. Higgins JP, Thompson SG, Deeks JJ et al (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  Google Scholar 

  31. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129

    Article  Google Scholar 

  32. Tobias A (1999) Assessing the influence of a single study in the meta-analysis estimate. Stata Tech Bull 8:15–17

    Google Scholar 

  33. Stuck AE, Rubenstein LZ, Wieland D (1998) Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ 316:469

    Article  PubMed  CAS  Google Scholar 

  34. Egger M, Davey Smith G, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  PubMed  CAS  Google Scholar 

  35. Cheng XY, Cao CF, Ji B et al (2009) Association between MTHFR C677T polymorphism and osteoporotic fractures risk. Chin J Gerontol 29:2441–2443

    CAS  Google Scholar 

  36. Nissen N, Madsen JS, Bladbjerg EM et al (2009) No association between hip geometry and four common polymorphisms associated with fracture: the Danish osteoporosis prevention study. Calcif Tissue Int 84:276–285

    Article  PubMed  CAS  Google Scholar 

  37. Baines M, Kredan MB, Usher J et al (2007) The association of homocysteine and its determinants MTHFR genotype, folate, vitamin B12 and vitamin B6 with bone mineral density in postmenopausal British women. Bone 40:730–736

    Article  PubMed  CAS  Google Scholar 

  38. Kiel DP, Demissie S, Dupuis J et al (2007) Genome-wide association with bone mass and geometry in the Framingham heart study. BMC Med Genet 8(Suppl 1):S14

    Article  PubMed  Google Scholar 

  39. Gjesdal CG, Vollset SE, Ueland PM et al (2006) Plasma total homocysteine level and bone mineral density: the Hordaland Homocysteine study. Arch Intern Med 166:88–94

    Article  PubMed  CAS  Google Scholar 

  40. Riancho JA, Valero C, Zarrabeitia MT (2006) MTHFR polymorphism and bone mineral density: meta-analysis of published studies. Calcif Tissue Int 79:289–293

    Article  PubMed  CAS  Google Scholar 

  41. Lubec B, Fang-Kircher S, Lubec T et al (1996) Evidence for McKusick’s hypothesis of deficient collagen cross-linking in patients with homocystinuria. Biochim Biophys Acta 1315:159–162

    Article  PubMed  Google Scholar 

  42. Wang H, Liu C (2011) Association of MTHFR C667T polymorphism with bone mineral density and fracture risk: an updated meta-analysis. Osteoporos Int 23(11):2625-34

    Google Scholar 

  43. Peters J, Mengersen K (2008) Selective reporting of adjusted estimates in observational epidemiology studies: reasons and implications for meta-analyses. Eval Health Prof 31:370–389

    Article  PubMed  Google Scholar 

  44. Simmonds MC, Higgins JP, Stewart LA et al (2005) Meta-analysis of individual patient data from randomized trials: a review of methods used in practice. Clin Trials 2:209–217

    Article  PubMed  Google Scholar 

  45. Uitterlinden AG, Ralston SH, Brandi ML et al (2006) The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann Intern Med 145:255–264

    PubMed  CAS  Google Scholar 

  46. Ji GR, Yao M, Sun CY et al (2010) BsmI, TaqI, ApaI and FokI polymorphisms in the vitamin D receptor (VDR) gene and risk of fracture in Caucasians: a meta-analysis. Bone 47:681–686

    Article  PubMed  CAS  Google Scholar 

  47. Richards JB, Kavvoura FK, Rivadeneira F et al (2009) Collaborative meta-analysis: associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 151:528–537

    PubMed  Google Scholar 

  48. Mann V, Ralston SH (2003) Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture. Bone 32:711–717

    Article  PubMed  CAS  Google Scholar 

  49. Ioannidis JP, Stavrou I, Trikalinos TA et al (2002) Association of polymorphisms of the estrogen receptor alpha gene with bone mineral density and fracture risk in women: a meta-analysis. J Bone Miner Res 17:2048–2060

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interests

None of the authors have any conflict of interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanlin Liu or Dianming Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, R., Liu, W., Zhao, A. et al. Quantitative assessment of the associations between MTHFR C677T and A1298C polymorphisms and risk of fractures: a meta-analysis. Mol Biol Rep 40, 2419–2430 (2013). https://doi.org/10.1007/s11033-012-2322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2322-4

Keywords

Navigation