Skip to main content
Log in

Expression and characterization of a novel isocitrate dehydrogenase from Streptomyces diastaticus No. 7 strain M1033

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Isocitrate dehydrogenase (IDH) is one of the key enzymes in tricarboxylic acid cycle, widely distributed in Archaea, Bacteria and Eukarya. Here, we report for the first time the cloning, expression and characterization of a monomeric NADP+-dependent IDH from Streptomyces diastaticus No. 7 strain M1033 (SdIDH). Molecular mass of SdIDH was about 80 kDa and showed high amino acid sequence identity with known monomeric IDHs. Maximal activity of SdIDH was observed at pH 8.0 (Mn2+) and 9.0 (Mg2+), and the optimal temperature was 40 °C (Mn2+) and 37 °C (Mg2+). Heat-inactivation studies showed that SdIDH remained about 50 % activity after 20 min of incubation at 47 °C. SdIDH displayed a 19,000 and 32,000-fold (k cat/K m) preference for NADP+ over NAD+ with Mn2+ and Mg2+, respectively. Our work implicate that SdIDH is a divalent metal ion-dependent monomeric IDH with remarkably high coenzyme preference for NADP+. This work may provide fundamental information for further investigation on the catalytic mechanism of monomeric IDH and give a clue to disclose the real cause of IDH monomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hurley JH, Dean AM, Sohl JL, Koshland D, Stroud RM (1990) Regulation of an enzyme by phosphorylation at the active site. Science 249(4972):1012–1016

    Article  PubMed  CAS  Google Scholar 

  2. Shinar G, Rabinowitz JD, Alon U (2009) Robustness in glyoxylate bypass regulation. PLoS Comput Biol 5(3):e1000297

    Article  PubMed  Google Scholar 

  3. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773

    Article  PubMed  CAS  Google Scholar 

  4. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, Yu W, Li Z, Gong L, Peng Y (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324(5924):261–265

    Article  PubMed  CAS  Google Scholar 

  5. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    Article  PubMed  CAS  Google Scholar 

  6. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting [alpha]-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234

    Article  PubMed  CAS  Google Scholar 

  7. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM (2010) Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 207(2):339–344

    Article  PubMed  CAS  Google Scholar 

  8. Karlström M, Steen IH, Madern D, Fedöy AE, Birkeland NK, Ladenstein R (2006) The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima. FEBS J 273(13):2851–2868

    Article  PubMed  Google Scholar 

  9. Zhu G, Golding GB, Dean AM (2005) The selective cause of an ancient adaptation. Science 307(5713):1279–1282

    Article  PubMed  CAS  Google Scholar 

  10. Dean AM, Koshland DE Jr (1993) Kinetic mechanism of Escherichia coli isocitrate dehydrogenase. Biochemistry 32(36):9302–9309

    Article  PubMed  CAS  Google Scholar 

  11. Singh SK, Miller SP, Dean A, Banaszak LJ, LaPorte DC (2002) Bacillus subtilis isocitrate dehydrogenase. J Biol Chem 277(9):7567–7573

    Article  PubMed  CAS  Google Scholar 

  12. Xu X, Zhao J, Xu Z, Peng B, Huang Q, Arnold E, Ding J (2004) Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J Biol Chem 279(32):33946–33957

    Article  PubMed  CAS  Google Scholar 

  13. Huang D, Liu J, Shen G (2009) Cloning, expression, and enzymatic characterization of isocitrate dehydrogenase from Helicobacter pylori. Protein J 28(9):443–447

    Article  PubMed  CAS  Google Scholar 

  14. Yasutake Y, Watanabe S, Yao M, Takada Y, Fukunaga N, Tanaka I (2002) Structure of the monomeric isocitrate dehydrogenase: evidence of a protein monomerization by a domain duplication. Structure 10(12):1637–1648

    Article  PubMed  CAS  Google Scholar 

  15. Yasutake Y, Watanabe S, Yao M, Takada Y, Fukunaga N, Tanaka I (2003) Crystal structure of the monomeric isocitrate dehydrogenase in the presence of NADP+. J Biol Chem 278(38):36897–36904

    Article  PubMed  CAS  Google Scholar 

  16. Watanabe S, Yasutake Y, Tanaka I, Takada Y (2005) Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes. Microbiology 151(4):1083–1094

    Article  PubMed  CAS  Google Scholar 

  17. Chen R, Yang H (2000) A highly specific monomeric isocitrate dehydrogenase from Corynebacterium glutamicum. Arch Biochem Biophys 383(2):238–245

    Article  PubMed  CAS  Google Scholar 

  18. Imabayashi F, Aich S, Prasad L, Delbaere LTJ (2006) Substrate-free structure of a monomeric NADP isocitrate dehydrogenase: an open conformation phylogenetic relationship of isocitrate dehydrogenase. Proteins Struct Funct Bioinform 63(1):100–112

    Article  CAS  Google Scholar 

  19. Sidhu NS, Delbaere LTJ, Sheldrick GM (2011) Structure of a highly NADP+-specific isocitrate dehydrogenase. Acta Crystallogr D 67(10):856–869

    Article  PubMed  Google Scholar 

  20. Hurley JH, Dean AM, Koshland DE Jr, Stroud RM (1991) Catalytic mechanism of NADP+-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry 30(35):8671–8678

    Article  PubMed  CAS  Google Scholar 

  21. Zhu GP, Xu C, Teng MK, Tao LM, Zhu XY, Wu CJ, Hang J, Niu LW, Wang YZ (1999) Increasing the thermostability of d-xylose isomerase by introduction of a proline into the turn of a random coil. Protein Eng 12(8):635–638

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Xu C, Lu Z, Yang Y, Ge F, Zhu G, Teng M, Niu L (2002) Construction of double-copy glucose isomerase gene engineering strain of Streptomyces diastaticus by homologous recombination. Curr Microbiol 44(4):273–279

    Article  PubMed  CAS  Google Scholar 

  23. Zhang B, Wang B, Wang P, Cao Z, Huang E, Hao J, Dean AM, Zhu G (2009) Enzymatic characterization of a monomeric isocitrate dehydrogenase from Streptomyces lividans TK54. Biochimie 91(11):1405–1410

    Article  PubMed  CAS  Google Scholar 

  24. Leyland ML, Kelly DJ (1991) Purification and characterization of a monomeric isocitrate dehydrogenase with dual coenzyme specificity from the photosynthetic bacterium Rhodomicrobium vannielii. Eur J Biochem 202(1):85–93

    Article  PubMed  CAS  Google Scholar 

  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  26. Gouet P, Courcelle E, Stuart DI (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15(4):305–308

    Article  PubMed  CAS  Google Scholar 

  27. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  28. Sahara T, Takada Y, Takeuchi Y, Yamaoka N, Fukunaga N (2002) Cloning, sequencing, and expression of a gene encoding the monomeric isocitrate dehydrogenase of the nitrogen-fixing bacterium Azotobacter vinelandii. Biosci Biotechnol Biochem 66(3):489–500

    Article  PubMed  CAS  Google Scholar 

  29. Ceccarelli C, Grodsky NB, Ariyaratne N, Colman RF, Bahnson BJ (2002) Crystal structure of porcine mitochondrial NADP+-dependent isocitrate dehydrogenase complexed with Mn2+ and isocitrate. J Biol Chem 277(45):43454–43462

    Article  PubMed  CAS  Google Scholar 

  30. Wang A, Cao ZY, Wang P, Liu AM, Pan W, Wang J, Zhu GP (2011) Heteroexpression and characterization of a monomeric isocitrate dehydrogenase from the multicellular prokaryote Streptomyces avermitilis MA-4680. Mol Biol Rep 38(6):3717–3724

    Article  PubMed  CAS  Google Scholar 

  31. Steen IH, Madsen MS, Birkeland NK, Lien T (1998) Purification and characterization of a monomeric isocitrate dehydrogenase from the sulfate-reducing bacterium Desulfobacter vibrioformis and demonstration of the presence of a monomeric enzyme in other bacteria. FEMS Microbiol Lett 160(1):75–79

    Article  PubMed  CAS  Google Scholar 

  32. Levitt M (1978) Conformational preferences of amino acids in globular proteins. Biochemistry 17(20):4277–4285

    Article  PubMed  CAS  Google Scholar 

  33. Imanaka T, Nakae M, Ohta T, Takagi M (1992) Design of temperature-sensitive penicillinase repressors by replacement of Pro in predicted beta-turn structures. J Bacteriol 174(4):1423–1425

    PubMed  CAS  Google Scholar 

  34. Nakamura S, Tanaka T, Yada RY, Nakai S (1997) Improving the thermostability of Bacillus stearothermophilus neutral protease by introducing proline into the active site helix. Protein Eng 10(11):1263–1269

    Article  PubMed  CAS  Google Scholar 

  35. Chen R, Greer A, Dean AM (1995) A highly active decarboxylating dehydrogenase with rationally inverted coenzyme specificity. Proc Natl Acad Sci USA 92(25):11666–11670

    Article  PubMed  CAS  Google Scholar 

  36. Eguchi H, Wakagi T, Oshima T (1989) A highly stable NADP-dependent isocitrate dehydrogenase from Thermus thermophilus HB8: purification and general properties. Biochim Biophys Acta 990(2):133–137

    Article  PubMed  CAS  Google Scholar 

  37. Roy SO, Packard TT (1998) NADP-isocitrate dehydrogenase from Pseudomonas nautica: kinetic constant determination and carbon limitation effects on the pool of intracellular substrates. Appl Environ Microbiol 64(12):4958–4964

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by funds from the National Natural Science Foundation of China (31170005; 30870062), Specialized Research Fund for the Doctoral Program of Higher Education of China (20113424110004), the Fund of State Key Laboratory of Genetics Resources and Evolution from Kunming Institute of Zoology (Chinese Academy of Sciences, CAS) (GREKF11-07), the National High Technology Research and Development Program (“863” Program: 2012AA02A708), Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources and Program for Innovative Research Team in Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ping Zhu.

Additional information

B.-B. Zhang and P. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, BB., Wang, P., Wang, A. et al. Expression and characterization of a novel isocitrate dehydrogenase from Streptomyces diastaticus No. 7 strain M1033. Mol Biol Rep 40, 1615–1623 (2013). https://doi.org/10.1007/s11033-012-2210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2210-y

Keywords

Navigation